



## Microbiological treatment of selenium containing materials

Thesis
Submitted for the award of the degree of doctor philosophy in microbiology

By

Ali Mohamed Ali Saeed (M.Sc. Microbiology, 2010)

#### **Supervisors**

#### Dr. Abd El Moneim M. Osman

Professor of Mineralogy, Geology Department, Faculty of Science, Ain Shams University

#### Dr. Khaled Zakaria El-Baghdady

Associate Prof. of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University

#### Dr. Abd El Fattah I. Helal

Professor of Atomic Physics, Former Vice Chairman Atomic Energy Authority

#### Dr. Einas H. El Shatoury

Associate Prof. of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University

#### Dr. Abeer E. M. Zakaria

Associate Prof. of Microbiology Microbiology Department, National Center of Radiation Research and Technology (NCRRT).

Microbiology Department, Faculty of Science, Ain Shams University.

2015

#### **Approval sheet**

## Microbiological treatment of selenium containing materials

#### By

#### Ali Mohamed Ali Saeed

M.Sc. In Microbiology Ain Shams University 2010

#### **Supervisors**

#### **Approved**

#### Prof. Dr. Abd El Moneim M. Osman

Prof. of Mineralogy,

Faculty of Science,

Ain Shams University.

#### Prof. Dr. Abd El Fattah I. Helal

Prof. of Atomic Physics

Former Vice Chairman Atomic Energy Authority.

#### Dr. Khaled Zakaria El-Baghdady

Ass. Prof. of Microbiology,

Faculty of Science,

Ain Shams University.

#### Dr. Einas H. El Shatoury

Ass. Prof. of Microbiology,

Faculty of Science,

Ain Shams University.

#### Dr. Abeer E. M. Zakaria

Ass. Prof of Microbiology,

National Center of Radiation

Research and Technology (NCRRT).

#### **Examination committee**

#### Prof. Dr. Zeinab Mohamed Hassan Kheir Allah

Prof. of Microbiology,

Faculty of Science (Girls),

Ain Shams University.

#### Prof. Dr. Bahgat Mohamed Refaat

Prof. of Microbiology,

Faculty of Science,

El-Azhar University.

#### Prof. Dr. Abd El Moneim M. Osman

Prof. of Mineralogy,

Faculty of Science,

Ain Shams University.

#### Dr. Khaled Zakaria El-Baghdady

Ass. Prof. of Microbiology,

Faculty of Science,

Ain Shams University.

# This dissertation has not been previously submitted for any degree at this or at any other university

**Ali Mohamed Ali Saeed** 



### ACKNOWLEDGEMENT

## First and foremost, I feel always indebted to Allah, the most beneficent and merciful

A great thank to Professor Abd El Moneim M. Osman, Professor of Mineralogy, Faculty of Science, Ain Shams University for his support, encouragement, valuable advices and constant help.

I want to express my thanks to Professor Abd El Fattah I. Helal, Professor of Atomic Physics, Former Vice Chairman Atomic Energy Authority for his continuous helps and encouragement.

I would like to express my deep gratitude and thanks to my dear supervisor Dr. Khaled Zakaria El-Baghdady, Associate Prof. of Microbiology, Faculty of Science, Ain Shams University for his help, encouragement, continuous advice, valuable suggestion in all steps of this thesis and his expert supervision. I am proud to be one of his students and I hope that he is satisfied with me.

A great thank to Dr. Einas H. El Shatoury, Associate Professor of Microbiology, Faculty of Science, Ain Shams University for her continuous helps and encouragement. She was always patient, perfect in work organization and the best advisor and she is a good leader to our team work.

I gratefully and sincerely thank my dear supervisor Dr. Abeer E. M. Zakaria, Associate Professor of Microbiology, National Center of Radiation Research and Technology (NCRRT) for her help, continuous support, valuable instructions and guidance from the start of the work. She was always patient, perfect in work organization and the best advisor.

I would also like to show my gratitude to Dr. Sahar Tolba, Associate Professor of microbiology, Faculty of Science, Ain Shams University and Dr. Mahmoud M. El Mosallamy, Lecturer of genetics, Faculty of Agriculture, Ain Shams Universit for their assistance in the molecular techniques.

A deep thank to Microbiology Department and all my Colleagues in Microbiology department for their assistance and support.

Avery special thanks to My WIFE who has stood by me all through my studies and for her constant support and prayers.

Deep thanks to MY DAUGHTERS for their patience. Great thanks to My BROTHER for his support and continuous help from the start of my study.

And Finally, My deep appreciation goes to My ADORABLE PARENTS who learned me the first of everything in my life and without them, this work would not have seen light.

## **CONTENTS**

| Subject                                       | Page<br>no. |
|-----------------------------------------------|-------------|
| List of tables                                | 1101        |
| List of figures                               |             |
| List of photos                                |             |
| Abbreviations                                 |             |
| Aim of work                                   |             |
| Abstract                                      | 1           |
| Introduction                                  | 3           |
| Literature Review                             | 5           |
| 1-1 Selenium forms and occurrence             | 6           |
| 1-2 Selenium Toxic Effects in the Environment | 9           |
| 1-3 Uses of Selenium                          | 12          |
| 1-4 Applications                              | 16          |
| 1-4-1 Manganese electrolysis                  | 16          |
| 1-4-2 Glass production                        | 16          |
| 1-4-3 Alloys                                  | 17          |
| 1-4-4 Medical use                             | 17          |
| 1-4-5 Other uses                              | 18          |
| 1-5 Selenocyanate                             | 19          |
| 1-6 Selenium Treatment                        | 20          |
| 1-7 Selenite reduction mechanism              | 26          |

| 1-8 Horizontal gene transfer                              | 29 |
|-----------------------------------------------------------|----|
| Materials and Methods                                     |    |
| 2-1 Materials                                             | 31 |
| 2-1-1 Soil samples                                        | 31 |
| 2-1-2 Bacterial isolates                                  | 31 |
| 2-1-3 Culture media                                       | 33 |
| 2-1-4 Chemicals                                           | 36 |
| 2-1-5 Reagents and solutions                              | 37 |
| 2-2 Methods                                               | 38 |
| 2-2-1 Soil samples                                        | 38 |
| 2-2-2 Isolation of selenite reducing bacteria             | 38 |
| 2-2-3 Preservation and maintenance of the pure bacterial  |    |
| isolates                                                  | 39 |
| 2-2-4 Screening and selection of potent selenite reducing |    |
| bacterial isolates                                        | 39 |
| 2-2-5 Detection of elemental selenium production          | 40 |
| 2-2-6 Quantitative measurement of elemental selenium      |    |
| produced by bacterial isolates                            | 40 |
| 2-2-7 Preparation of standard curve of selenium           | 41 |
| 2-2-8 Quantitative assay for selenium production          | 42 |
| 2-2-9 Molecular analysis                                  | 42 |
| 2-2-9-1 Identification of the selenite reducing bacterial |    |
| isolates by 16S rRNA gene sequencing                      | 42 |
| 2-2-9-2 DNA extraction, PCR Amplification of <i>trxB</i>  |    |
| gene                                                      | 43 |

| 2-2-10 Optimization of selenite reduction by bacteria             |    |
|-------------------------------------------------------------------|----|
| 2-2-10-1 Effect of different types and concentrations of          |    |
| electron donor on selenite reduction                              | 46 |
| 2-2-10-2 Effect of different concentrations of selenite           |    |
| (electron acceptor) on selenite reduction                         | 47 |
| 2-2-10-3 Effect of different incubation periods on                |    |
| selenite reduction                                                | 47 |
| 2-2-10-4 Effect of different pH on selenite reduction             | 47 |
| 2-2-10-5 Effect of different inoculum sizes on selenite           |    |
| reduction                                                         | 48 |
| 2-2-10-6 Effect of different incubation temperature on            |    |
| selenite reduction                                                | 48 |
| 2-2-11 Transmission Electron Microscope (TEM)                     | 49 |
| 2-2-12 Statistical analysis                                       | 49 |
| Results                                                           |    |
| 3-1 Isolation of selenite reducing bacteria                       | 50 |
| 3-2 Preliminary selection for selenite reducing bacteria          | 51 |
| 3-3 Characterization of elemental selenium production             | 52 |
| 3-4 Standard curve of selenium                                    | 53 |
| 3-5 Quantitative assay for selenium production                    | 54 |
| 3-6 Identification of the selenite reducing bacterial isolates by |    |
| 16S rDNA sequencing                                               | 56 |
| 3-7 Thioredoxin reductase ( <i>trxB</i> ) detection               | 58 |
| 3-8 Optimization of selenite reduction by bacterial isolates      | 61 |

| 3-8-1 Study the effect of different types and concentrations   |    |
|----------------------------------------------------------------|----|
| of electron donor                                              | 61 |
| 3-8-2 Effect of different concentrations of selenite (electron |    |
| acceptor)                                                      | 64 |
| 3-8-3 Effect of different incubation period                    | 66 |
| 3-8-4 Effect of different pH                                   | 68 |
| 3-8-5 Effect of different inoculum sizes                       | 70 |
| 3-8-6 Effect of different incubation temperatures              | 72 |
| 3-9 Growth rate of Z. dentrificans Seland P. stutzeri Se5      | 74 |
| 3-10 Transmission Electron Microscope                          | 77 |
| Discussion                                                     | 79 |
| English summary                                                | 92 |
| References                                                     | 96 |
| Arabic summary                                                 |    |

## LIST OF TABLES

| <b>Fable</b> | Title                                                                                             | Page          |
|--------------|---------------------------------------------------------------------------------------------------|---------------|
| no.          | Soil samples and there localities                                                                 | <b>no.</b> 31 |
| 2            | Designed primers for trxB gene                                                                    | 44            |
| 3            | Color, shape and Gram reaction of the selected isolates                                           | 50            |
| 4            | Quantitative analysis of Se° produced by selected Isolates                                        | 54            |
| 5            | Identification and identity of the selected isolates                                              | 56            |
| 6            | pairwise distance of trxB gene                                                                    | 59            |
| 7            | Effect of different types and concentrations of electron donor on bacterial reduction of selenite | 62            |
| 8            | Effect of different concentrations of selenite on bacterial production of selenium                | 65            |
| 9            | Effect of different incubation periods on bacterial reduction of selenite                         | 67            |
| 10           | Effect of different pH on bacterial reduction of selenite                                         | 69            |
| 11           | Effect of different inoculum sizes on selenite bioreduction                                       | 71            |
| 12           | Effect of different incubation temperatures on reduction of selenite by bacterial isolates        | 73            |

## LIST OF FIGURES

| Figure no. | Title                                                                                             | Page no. |
|------------|---------------------------------------------------------------------------------------------------|----------|
| 1          | Known components of the thioredoxin system (top) and glutaredoxin system (bottom)                 | 28       |
| 2          | UV-Visible spectrum of Se° nanoparticles formed by bacteria                                       | 52       |
| 3          | Standard calibration curve of Se°                                                                 | 53       |
| 4          | Amount of Se° produced by selected isolates at 30°C for 10 days.                                  | 55       |
| 5          | Neighbor joining phylogenetic tree of 16S rRNA genes                                              | 57       |
| 6          | Neighbor joining phylogenetic tree of <i>trxB</i> genes                                           | 60       |
| 7          | Effect of different types and concentrations of electron donor on bacterial reduction of selenite | 63       |
| 8          | Effect of different concentrations of selenite on bacterial production of selenium                | 65       |
| 9          | Effect of different incubation periods on bacterial reduction of selenite                         | 67       |
| 10         | Effect of different pH on bacterial reduction of selenite                                         | 69       |
| 11         | Effect of different inoculum sizes on selenite bioreduction                                       | 71       |
| 12         | Effect of different incubation temperatures on reduction of selenite by bacterial isolates        | 73       |
| 13         | The growth curve of <i>Z. dentrificans</i> Se1 <i>and P. stutzeri</i> Se5                         | 76       |

## List of Photos

## LIST OF PHOTOS

| Photo no. | Title                                                                                    | Page<br>no. |
|-----------|------------------------------------------------------------------------------------------|-------------|
| 1         | Maps for sampling locations                                                              | 31          |
| 2         | Sampling locations by Google Earth                                                       | 32          |
| 3         | Representive plates showing the growth of a selenite reducing isolates on NAS medium     | 51          |
| 4         | Selenium production capabilities of selected isolates on EBM medium at 30°C for 10 days. | 55          |
| 5         | Transmission Electron Micrographs (TEM) of Z. dentrificans Se1                           | 77          |
| 6         | Transmission Electron Micrographs (TEM) of <i>P. stutzeri</i> Se5.                       | 78          |

#### **ABBREVIATIONS**

**CFU** Colony Forming Units

**EBM** Enrichment basal medium

**EDTA** Ethylenediaminetetraacetic acid

**EPA** Environmental Protection Agency

**g** Gram

**HGT** Horizontal gene transfer

**NAS** Nutrient agar medium supplemented with

5 mM of sodium selenite

**mg** milligram

**ml** Milliliters

**mM** Millimolar

μ**g** Microgram

μ moles Micromoles

**nm** Nanometer

**PCR** Polymerase Chain Reaction

**Se**° Elemental selenium

**Se IV** Selenite

Se VI Selenate

**TBE** Tris/Borate Electrophoresis (buffer)

**TE** Tris/EDTA (buffer)

*trxB* Thioredoxin reductase type B

**TEM** Transmission Electron Microscope