

PERFORMANCE OF INVERTED U-SHAPED RETAINING WALL

By

Ahmed Hassan Ahmed M. El-Orabi

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Civil Engineering - Public Works

PERFORMANCE OF INVERTED U-SHAPED RETAINING WALL

By **Ahmed Hassan Ahmed M. El-Orabi**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Civil Engineering - Public Works

Under the Supervision of

Prof. Dr. Abdelsalam M. Salem

Dr. Rami M. El-Sherbiny

Professor of Geotechnical Engineering and Foundations

Associate Professor of Geotechnical Engineering and Foundations

Faculty of Engineering, Cairo University

Faculty of Engineering, Cairo University

PERFORMANCE OF INVERTED U-SHAPED RETAINING WALL

By **Ahmed Hassan Ahmed M. El-Orabi**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Civil Engineering - Public Works

Approved by the Examining Committee

Prof. Dr, Abdelsalam M. Salem,	Thesis Main Advisor	
Dr. Rami M. El-Sherbiny,	Thesis Advisor	
Prof. Dr. Mohamed I. Amer,	Internal Examiner	
Prof. Dr. Sherif Wissa Agaiby, Director at Dar Al-handasah (Shair and Partners)	External Examiner	

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

Engineer's Name: Ahmed Hassan Ahmed M. El-Orabi

Date of Birth: 16/12/1986 **Nationality:** Egypt

E-mail: eaorabi@gmail.com
Phone: +201002218202
Address: Giza, Egypt
Registration Date: 1/09/2010
Awarding Date: -/-/2018

Degree: Master of Science

Department: Civil Engineering- Public Works

Supervisors: Prof. Dr. Abdelsalam M. Salem

Dr. Rami M. El-Sherbiny

Examiners: Prof. Dr. Abdelsalam M. Salem (Thesis main advisor)

Dr. Rami M. El-Sherbiny (Thesis advisor)
Prof. Dr. Mohamed I. Amer (Internal examiner)
Prof. Dr. Sherif W. Agaiby (External examiner)

Director at Dar Al-Handasah (Shair and Partners)

Title of Thesis:

PERFORMANCE OF INVERTED U-SHAPED RETAINING WALL

Key Words:

Retaining walls; Cantilever type; RC wall; Fill; Inverted L-shaped

Summary:

Gravity type retaining walls have been traditionally used as retaining structures in fill areas. However, the footprint of gravity walls increases with increasing height, which may cause challenges in narrow area with limitations on base width. Inverted U-wall may provide an alternative to gravity wall system in areas with base width limitations. Moreover, the proposed system mainly provides cost benefit compared to cantilever or counterforted or gravity type retaining walls. It also provides movements smaller compared to other gravity wall types.

Acknowledgments

This research is developed in the years 2011 to 2015 during my participation as a researcher student in Cairo University, Egypt. The objective of this research was the analysis of stress-deformation behavior of a non-traditional composed retaining wall using Finite Element code and also the investigation of the Limit Equilibrium state for this non-traditional system.

The most heartfelt thanks for supervisors Prof. Dr. Abdelsalam M. Salem and Prof. Dr. Rami M. El-Sherbiny, for their richly favours to me. I'm very thankful to their trust and scientific support. Also there encouragement, patience, advices and kindness helped me always and will help me further in future.

A noteworthy is that this research was initially suggested and outlined by Prof. Dr. Abdelsalam M. Salem.

Many thanks are also given for Dr. George Samir Fahmi for his interest, his helpful discussion and comments which helped me so much.

Finally, I would like to give all sincere thanks to my family, my mother, my father, my sisters Nermeen, Nashwa and Nada for their love and support. This research work is to the spirit of my Grandfather Muhammed El-Masry, who I am indebted to him by all my life and all my success.

I would like to express my appreciation and love to my small family, my wife Hend, for the excessive love and support and patience she gave me during this work. Not to forget the love of my daughters Karma and Lara which inspired me during the course of this work

Table of Contents

ACKNOV	WLEDGMENTS	I
TABLE (OF CONTENTS	II
LIST OF	TABLES	IV
LIST OF	FIGURES	V
NOMEN	CLATURE	VIII
ABSTRA	CT	X
СНАРТЕ	CR 1: INTRODUCTION	1
1.1.	OVERVIEW	1
СНАРТЕ	CR 2 : LITERATURE REVIEW	3
2.1.	Introduction	3
2.2.	THEORIES OF EARTH PRESSURE	
2.2.1.		
2.2.2.	•	
2.3.	TYPES OF RETAINING WALLS	
2.3.1.	Anchored retaining walls	7
2.3.2.		
2.3.3.	Mechanically stabilized earth wall (MSEW)	9
2.3.4.	Gravity walls	10
2.3.5.	Cantilevered retaining walls	11
2.4.	FAILURE OF RETAINING WALLS	12
2.5.	STABILITY ANALYSIS OF RETAINING WALLS	13
2.6.	DESIGN OF INVERTED T-SHAPED WALL WITH A RELIEF FLOOR	14
2.6.1.	Geotechnical principal of L-shaped cantilever wall	14
2.6.2.	Geotechnical principal of a relief floor	15
2.6.3.	Numerical Validation of a relief floor	16
СНАРТЕ	CR 3 : METHOD OF ANALYSIS	18
3.1.	General	18
3.2.	LIMIT EQUILIBRIUM ANALYSIS USING SLIDE	18
3.2.1.	Adopting modeling feature in SLIDE	
3.2.2.	Critical slip surface search technique	21
3.2.3.	Soil constitutive model and parameters	22
3.2.4.	Wall geometry	23
3.3.	NUMERICAL MODELING USING PLAXIS 2D	24
3.3.1.	Boundary conditions & FE model size	24
3.3.2.	Mesh Generation.	24
3.3.3.	Soil constitutive model and parameters	
3.3.4.	Plate and interface elements	31

3.3.5	External loads	34
3.3.6	Construction sequence	35
3.3.7	Limitations	40
3.3.8	Model verification	40
CHAPT	ER 4 : PARAMETRIC STUDY AND ANALYSIS	44
4.1.	General	44
4.2.	SCOPE OF WORK	45
4.3.	METHODOLOGY AND PARAMETRIC STUDY	46
4.4.	RESULTS OF THE SENSITIVITY ANALYSIS	47
4.3.1	. Global factor of safety	48
4.3.2	. Wall movements	52
4.3.3	. Induced straining actions	58
4.5.	Analysis	
4.5.1		
4.5	Effect of relief floor (L) and dead-man (D) on factor of safety (FS)	
4.5	1.1.2. Effect of buried depth ratio (H _I /H _T) on factor of safety (FS)	64
4.5	1.1.3. Effect of wall embedment (E) on factor of safety (FS)	66
4.5	1.1.4. Effect of relief floor (L) and dead-man (D) on wall movements	67
4.5	1.1.5. Effect of buried depth ratio (H _L /H _T) on wall movements	67
4.5	1.1.6. Effect of wall embedment (E) on wall movements	69
4.5	1.1.7. Effect of relief floor (L) and dead-man (D) on straining actions	70
4.5	1.1.8. Effect of buried depth ratio (HL/HT) on straining actions	
4.5	1.1.9. Effect of wall embedment (E) on staining actions:	73
4.5.2	Load transfer mechanism	74
4.5.3	. Economic consideration	79
CHAPT	ER 5 : SUMMARY, CONCLUSION AND RECOMMENDATIONS	S81
5.1.	Summary	81
5.2.	CONCLUSION	82
5.3.	FUTURE RECOMMENDATIONS	
DEEEDI		0.4

List of Tables

Table 3-1 Limit equilibrium slope stability methods and the satisfying equilibrium	
equations	.19
Table 3-2 Analysis methods, situations in which they are most applicable, and	
limitations	.20
Table 3-3 Adopted constitutive soil models and parameters in the limit Equilibrium	
analysis	.23
Table 3-5 Summarized flexure properties of the R.C wall, used in FE analysis	.33
Table 3-6 Comparison between the analytical and numerical total EP of inverted U-	
shaped wall of 7.0m total height and $H_L=5.0$; considering different relief floor length	IS
	12
Table 4-7 Calculated wall movements for different height walls	.70
Table 4-8 Optimum wall segments	

List of Figures

Figure 1-1 Inverted U-wall system	.2
Figure 2-2 Types of retaining walls	
Figure 2-3 Anchored retaining wall	.8
Figure 2-4 Fascia retaining wall of narrow backfill width "B", and height "H"	.9
Figure 2-5 Mechanically stabilized earth wall	10
Figure 2-6 Counterfort retaining wall	11
Figure 2-7 Soil rapture surface (wing shape: C-A and E-F) of a L-shaped cantilever	
	14
Figure 2-8 Alternative designs rapture surface C-A-E of L-shaped cantilever wall (after	er
Vandepitte, 1979)	15
Figure 2-9 Four (4) zones of soil pressure distribution A-C, C`-D, D-E and E-F (after	
Vandepitte, 1979)	15
Figure 2-10 View of the inverted T-shaped cantilever wall with a relief floor	16
Figure 2-11 Positions of elements with a Mohr-Coulomb plastic behavior (c-phi	
reduction of 1.20)	17
Figure 3-12 SLIDE data set menu, adopted limit equilibrium method (Spencer), the	
number of slices, the maximum iteration process and the tolerance; used in the Limit	
	21
Figure 3-13 SLIDE data set menu, adopted surface search technique; used in the LEQ	
analysis2	
Figure 3-14 Inverted U-shaped wall geometry	
Figure 3-15 Adopted boundary conditions and model dimensions; used in FE analysis	
Figure 3-16 PLAXIS general setting window (Dimensions tab sheet)	
Figure 3-17 Connectivity plot of the inverted U-shaped wall	
Figure 3-18 The Mohr-Coulomb yield surface in principal stress space (c=0)	
Figure 3-19 Modified Mohr-Coulomb model in q-p space	
Figure 3-20 Modified Mohr-Coulomb model in deviatory plane	
Figure 3-21 Hyperbolic stress-strain relation in primary loading for a standard drained	
(&	30
Figure 3-22 Representation of total yield surface of Hardening Soil Model in principal	
stress space (after Brinkgreve and Broere, 2004)	
Figure 3-23 Adopted material sets in PLAXIS modeling	
Table 3-4 Summarized material properties, used in FE analysis	
Figure 3-24 Geotechnical applications in which plates and interfaces are used	
Figure 3-26 Wall bracing configuration, adopted in FE analysis	
Figure 3-27 Phase 2: Wall construction	
Figure 3-28 Phase 3: Dismantling of the first lower row	
Figure 3-29 Phase 4: Dismantling of the second upper row and the subsequent rows3	
Figure 3-30 Phase 5: Applying the surcharge load of the road	
Figure 3-31 Phase 5: Phi/c reduction result (i.e. total displacement shading)	
Figure 3-32 Induced lateral earth pressure due to existence of relief floor system,	ソ フ
developed by (Vandepitte, 1979)	40
Figure 3-33 Earth pressure verification of the inverted U-shaped wall; using Vandepitt	
analytical approach (i.e. H _T =5m, H _L =4.5m, E=1, D=0m)	

Figure 3-34 Earth pressure zoning underneath the relief floor of the inverted U-shaped wall
Figure 4-35 Typical stabilizing wall segments
Figure 4-36 Flow chart representing the study plan
Figure 4-37 Parametric study plan
Figure 4-38 Associated critical slip surface using SLIDE software, FS=1.38 (H _T 10m-
H _L 7m-L6.5m-E2m-D4.5m) 49
Figure 4-39 Associated maximum strains (i.e. rupture surface) using C-Phi, FS=1.37
(H _T 10m-H _L 7m-L6.5m-E2m-D4.5m) 50
Figure 4-40 Global factor of safety for a maximum retaining height (H _T) of 7.0m,
considering a fixed embedment length (E) of 1.0m and a buried depth (H _L /H _T) of 70%
51
Figure 4-41 Global factor of safety for a maximum retaining height (H _T) of 10.0m,
considering a fixed embedment length (E) of 2.0m and a buried ratio(H _L /H _T) of 70%.51
Figure 4-42 Global factor of safety for a maximum retaining height (H _T) of 13.0m,
considering a fixed embedment length (E) of 1.0m and a buried $ratio(H_L/H_T)$ of 70%.52
Figure 4-43 Maximum associated horizontal wall movements
$(H_T10-H_L7-L6.5-E2-D4.5), Hzl. = 32mm$ 53
Figure 4-44 Lateral deformation profile along section A-A
Figure 4-45 Maximum vertical wall movements associated
$(H_T 10-H_L 7-L 6.5-E 4.5), Vtl. = 24mm.$
Figure 4-46 Vertical movements profile along section B-B
Figure 4-47 Vertical movements profile along section C-C
Figure 4-48 Maximum wall movements associated for a maximum retained height (HT)
of 7.0m, considering a fixed embedment length (E) of 1.0m and a buried ratio (H _L /H _T)
of 70%
Figure 4-49 Maximum wall movements associated for a maximum retained height (HT)
of 10.0m, considering a fixed embedment length (E) of 2.0m and a buried ratio
(HL/HT) of 70%
Figure 4-50 Maximum wall movements associated for a maximum retained height (H _T)
of 13.0m, considering a fixed embedment length (E) of 1.0m and a buried ratio (H _L /H _T)
of 70%
Figure 4-51 Envelope of bending moment induced in the concrete frame, Max. BM =
380kN.m/m (H _T 10-H _L 7-L7.5-E1-E3.0)
Figure 4-52 Envelope of axial force induced in the concrete frame, Max. $T = 110kN/m$
(H _T 10-HL7-L7.5-E1-E3.0)
retained height (H _T) of 7.0m, considering a fixed embedment length (E) of 1.0m and a buried ratio (H _L /H _T) of 70%
Figure 4-54 Maximum induced straining actions in relief floor slab for a maximum
retained height (H _T) of 10.0m, considering a fixed embedment length (E) of 2.0m and a
buried ratio (HL/HT) of 70%
Figure 4-55 Maximum induced straining actions in the relief floor slab for a maximum
retained height (H _T) of 13.0m, considering a fixed embedment length (E) of 1.0m and a
buried ratio (HL/HT) of 70
Figure 4-56 Generated critical slip surfaces executed from SLIDE software for a
maximum retaining height (H _T) of 7.0m, considering fixed embedment length (E) of
1.0m, a buried ratio (H_L/H_T) of 70% and ratio of (L/H_L) of 110%; adopted at different
ratios of (D/H_L) 62

Figure 4-57 Global factor of safety for a maximum retained height (H _T) of 7.0m, considering a fixed embedment length (E) of 1.0m and a buried depth (H _L /H _T) of 70	0% 63
Figure 4-58 Global factor of safety for a maximum retained height (H _T) of 10.0m, considering a fixed embedment length (E) of 1.0m and a buried ratio(H _L /H _T) of 70%	
Figure 4-59 Global factor of safety executed for a maximum retained height (H _T) of 13.0m, considering a fixed embedment length (E) of 1.0m and a buried ratio(H _L /H _T 70%	f
Figure 4-60 Global factor of safety for a maximum retained height (H _T) of 10.0m, considering a fixed embedment length (E) of 1.0, (D/H _L) of 40% at different buried ratios	
Figure 4-61 Global factor of safety for a maximum retained height (H _T) of 10.0m, considering a fixed embedment length (E) of 1.0, (D/H _L) of 40% at different buried ratios	l 65
Figure 4-62 Global factor of safety for a maximum retained height (H _T) of 10.0m, considering a buried ratio (H _L /H _T) of 70%, (D/H _L) of 40% and adopted at different values of wall embedment (E)	66
Figure 4-63 Global factor of safety for a maximum retained height (H _T) of 10.0m, considering a buried ratio (H _L /H _T) of 70%, (D/H _L) of 60%, and adopted at different values of wall embedment (E)	
Figure 4-64 Maximum wall movements for a maximum retained height (H _T) of 10.0 considering a fixed embedment length (E) of 1.0m, (D/H _L) of 40% and adopted at different buried ratios	
Figure 4-65 Maximum wall movements for a maximum retained height (H _T) of 10.0 considering a fixed embedment length (E) of 1.0m, (D/H _L) of 60% and adopted at different buried ratios	
Figure 4-66 Maximum wall movements associated with a maximum retained heigh (H _T) of 10.0m, considering a buried depth (H _L /H _T) of 70%, and adopted at different values of dead man length (D) and wall embedment (E)	
Figure 4-67 Maximum induced straining actions in the relief floor slab for a maxim retained height (H _T) of 10.0m, considering a fixed embedment length (E) of 1.0m, (D/H _L) of 40% and adopted at different buried ratios	num 71
Figure 4-68 Maximum induced straining actions in the relief floor slab for a maxim retaining height (H _T) of 10.0m, considering a fixed embedment length (E) of 1.0m, (D/H _L) of 60% and adopted at different buried ratios	
Figure 4-69 Maximum induced straining actions in the relief floor slab for a maxim retained height (H _T) of 10.0m, considering a buried depth (H _L /H _T) of 70% and adop at different dead man lengths and wall embedment (E)	num oted
Figure 4-70 Schematic diagram of the forces in x-y plane	74
Figure 4-72 Effect of deadman length on load transfer mechanism, "total retained height of 10m, (L/H _L) of 150% and (H _L /H _T) of 50%"	76
10m, (L/H _T) of 75% and (D/H _L) of 60%"	77 78
Figure 4-75 Concrete volume required for comparison	80

Nomenclature

Symbol	Description
B_{g}	Width of the gravity wall
B.C.	Bearing Capacity
D	Dead man length
E	Wall embedment
E50	Plastic straining cause of a deviatoric loading
Eoed	Plastic straining cause of primary compression
Eur	Elastic unloading/reloading
H_{g}	Height of the gravity wall
$\mathrm{H_{L}}$	Exposed Height of the U-shaped wall
H_T	Total Retained Height
Ka	Coefficient of earth pressure in the active side
K_p	Coefficient of earth pressure in the passive side
L	Relief floor length
m	Stress dependent stiffness according to power law
Pa	Atmospheric pressure
$\mathbf{P}^{\mathrm{ref}}$	Reference pressure

R Interface coefficient

Su Undrained shear strength

 ΔV_L Vertical wall deformation

VH_L Horizontal wall deformation

Ø' Angle of shear strength

 σ'_{vo} Overburden pressure

Abstract

Gravity type retaining walls have been traditionally used as retaining structures in fill areas. However, the footprint of gravity walls increases with increasing height, which may cause challenges in narrow area with limitations on base width. Inverted U-wall may provide an alternative to gravity wall system in areas with base width limitations. Moreover, the proposed system mainly provides cost benefit compared to cantilever or counterforted or gravity type retaining walls. It also provides movements smaller compared to other gravity wall types.

The proposed wall system is composed of an inverted U-shaped reinforced concrete wall, extended from the toe of the wall to an intermediate level of the total height. A short gravity wall is constructed on top of the inverted U-wall to the top of the retained height. The inverted U-wall is a monolithic reinforced concrete frame, which is composed of relief floor/slab, stem, deadman and a small embedment.

The purpose of this research is to study the performance of the proposed wall system in terms of global factor of safety, induced straining actions, and wall movements, to understand the mechanism of load transfer and to evaluate the optimum wall configuration. The different aspects of wall geometry are thoroughly investigated by conducting a comprehensive parametric study using 2-D finite element and 2-D limit equilibrium analysis.

The results of the sensitivity analysis revealed a good performance compared to the traditional systems. The optimum wall configuration is discussed and compared with cantilever type walls. Significant cost reduction is achieved, as the exerted soil pressure is reduced due to development of soil arching resulting in reduced straining actions (lesser design cross section). The concrete volume is reduced by 45% compared to cantilever retaining walls. In addition, a design framework was developed in terms of preliminary wall sizing and loading setup.

Chapter 1: Introduction

1.1. Overview

The main factors that govern successful design of structures are safety and economical factors. In order to achieve these factors; designers should be aware of the latest design theories which leads to safe and economic design. Earth retaining structures are those structures; which have a special nature of behavior under loading. This special nature of behavior is an output of soil/structure interaction complexity.

There are many parameters which influence the design of earth retaining structures such as, selection of proper soil parameters; either deformability parameters or strength parameters; selection of proper soil model, and selection of proper interface parameters. Furthermore, Understating of the behavior of earth retaining structure is the first step to reach a successful design.

Literature encountered the work of many researches, addressing the mechanical behaviour of the traditional earth retaining walls (e.g. Gravity and cantilever walls). Many authors investigated governing design parameters. Moreover, many theories have been developed in order to achieve safe and economic design.

Gravity type retaining walls have been traditionally used as retaining structures in fill areas. However, the footprint of gravity walls increases with increasing height, which may cause challenges in narrow area with limitations on base width. Inverted U-wall may provide an alternative to gravity wall system in areas with base width limitations. Moreover, the proposed system always provides cost benefit compared to cantilever or counterforted or gravity type retaining walls. In addition, lateral movement of the proposed wall is less than others of gravity type.

An inverted U-Shape wall is proposed for limited base width that consists of:

- Stem embedded at the toe.
- Relief floor acting as a tie-back,
- Dead-man, and
- Limited height gravity wall.

The purpose of this investigation can be summarized as follows:

- Assess the stability of the proposed wall system against overall stability using limit equilibrium & F.E. methods.
- Perform a comprehensive parametric study using two dimensional numerical modeling to evaluate:
 - Wall movements
 - Induced straining actions (Bending moment & Normal forces).
- Develop a design framework and identify key factors to achieve a safe and economic design.
- Cost comparison between regular L-shaped and inverted U-shaped walls.