

A COMPARATIVE STUDY OF DIFFERENT CONTROL TECHNIQUES FOR ACTIVE SUSPENSION SYSTEMS

By

Rana Mohamed Abdel Rahman Saleh

A Thesis Submitted to the

Faculty of Engineering at Cairo University

In Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

In

ELECTICAL POWER AND MACHINES ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

A COMPARATIVE STUDY OF DIFFERENT CONTROL TECHNIQUES FOR ACTIVE SUSPENSION SYSTEMS

By

Rana Mohammed Abdel Rahman Saleh

A Thesis Submitted to the

Faculty of Engineering at Cairo University

In Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

In

ELECTICAL POWER AND MACHINES ENGINEERING

Under the Supervision of

Prof. Ahmed Mohamed Kamel

Professor of Electrical Power and Machines

Faculty of Engineering-Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

A COMPARATIVE STUDY OF DIFFERENT CONTROL TECHNIQUES FOR ACTIVE SUSPENSION SYSTEMS

By

Rana Mohamed Abdel Rahman Saleh

A Thesis Submitted to the

Faculty of Engineering at Cairo University

In Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

In

ELECTICAL POWER AND MACHINES ENGINEERING

Approved by the Examining Committee:

Prof. Ahmed Mohamed Kamel,

Prof. Mohamed Ahmed Mostafa Hassan,

Internal Examiner

Prof. Abdel Halim Bassiuny,

Professor at Faculty of Engineering, Helwan University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 **Engineer:** Rana Mohamed Abdel Rahman Saleh

Date of Birth: 10 / 9 / 1989 **Nationality:** Egyptian

E-mail: rana.saleh@fue.edu.eg
Phone: +2-01096782600
Address: Al Bouhayra, Egypt

Registration Date: 1/3/2013 **Awarding Date:** / /2018 **Degree:** Master of Science

Department: Electrical Power and Machines Engineering

Supervisors: Prof. Ahmed M. Kamel

Examiners: Prof. Mohamed Ahmed Kamel (Thesis Main Advisor)

Prof. Mohamed Ahmed Mostafa (Internal Examiner)
Prof. Abdel Halim Bassiuny (External Examiner)

Professor at the Faculty of Engineering,

Helwan University

Title of Thesis: A COMPARATIVE STUDY OF DIFFERENT CONTROL

TECHNIQUES FOR ACTIVE SUSPENSION SYSTEMS

Keywords: Active Suspension, Fuzzy, PID, Particle Swarm Optimization, Feedback

Linearization

Summary:

This research focuses on implementing a group of control techniques to enhance the performance of Active Suspension System for different vehicle's models under the presence of various road profiles.

Linear and nonlinear mathematical models of quarter and half vehicle and a linear model of full vehicle are presented. PID controller is used for the linear models and Feedback Linearization control is used for the nonlinear models whereas Fuzzy Logic controller is used for both the linear and nonlinear models. Particle Swarm Optimization is the tuning method for the provided controllers.

MATLAB/SIMULINK software is used for simulation which is based on the mathematical models. A comparison between the behavior of passive and active suspensions is demonstrated. Active suspension shows a significant enhancement compared to passive suspension.

ACKNOWLEDGMENTS

All praise and glory goes to Almighty Allah who gave me the power, patience, and courage to complete this work.

I would like to thank my supervisor; Prof. Dr. Ahmed Mohamed Kamel for his insightful advice, and support throughout this study.

My deep appreciation goes to my professors, colleagues, and friends for their support, and help during these hard years of my life. Special thanks to Dr. Hassan El Eishy, Dr. Ahmed Saeed, Eng. Ahmed Adel, Eng. Amr Metwally, Eng. Mostafa Sabry, Doaa El Wagih, and Eng. Nessma El Gibaly.

Finally, my sincere appreciation and thanks are dedicated to my beloved parents, sisters, and brothers. Without their continuous love, support, and encouragement, I would not have accomplished this work.

TABLE OF CONTENTS

ACKNO	OWLEDGMENTS	V
TABLE	OF CONTENTS	VI
LIST OI	F TABLES	IX
LIST O	F FIGURES	XI
NOMEN	NCLATURE	XIV
ABSTR.	ACT	XVII
Chapter	1 Introduction and Literature Review	1
1.1	Preface	1
1.2	Literature Review	3
1.3	Problem Definition	6
1.4	Thesis Objectives	6
1.5	Research Method	7
1.6	Thesis Outline	7
Chapter	2 Mathematical Modeling	8
2.1 In	troduction	8
2.2	Quarter Vehicle Model	8
2.2	.1 Linear Quarter Vehicle Model	8
2.2	.2 Nonlinear Quarter Vehicle Model	10
2.3	Half Vehicle Model	12
2.3	.1 Linear Half Vehicle Model	12
2.3	.2 Nonlinear Half Vehicle Model	
2.4	Road Irregularities	18
2.4	.1 Deterministic Road Irregularity	19
2.4	.2 Stochastic Road Irregularity	21
2.5 Su	ımmary	22
Chapter	3 Controller Design	23
3.1 In	troduction	23
3.2	Basic Control Methodologies	23
3.2	1 Particle Swarm Ontimization	23

3.2.2	Proportional Integral Derivative (PID) Controller	26
3.2.3	Feedback Linearization Control Methodology	29
3.2.4	Fuzzy Logic Control	35
3.3 Sur	nmary	38
Chapter 4 Si	mulation and Results	39
4.1 Introduction		
4.2 Lin	ear Quarter Vehicle Response	39
4.2.1	Single Bump Road Disturbance	40
4.2.2	Double Bump Road Disturbance	42
4.2.3	Bump and Hole Road Disturbance	45
4.2.4	Random Bump Road Disturbance	47
4.3 No	nlinear Quarter Vehicle Response	49
4.3.1 Si	ngle Bump Road Disturbance	49
4.3.2	Double Bump Road disturbance	51
4.3.3	Bump and Hole Road Disturbance	54
4.3.4	Random Bump Road Disturbance	56
4.4 Lin	ear Half Vehicle Response	58
4.4.1	Single Bump Road Disturbance	59
4.4.2	Double Bump Road Disturbance	61
4.4.3	Bump and Hole Road Disturbance	64
4.4.4	Random Bump Road Disturbance	67
4.5 No	nlinear Half Vehicle Response	69
4.5.1	Single Bump Road Disturbance	70
4.5.2	Double Bump Road Disturbance	73
4.5.3	Bump and Hole Road Disturbance	75
4.5.4	Random Bump Road Disturbance	78
4.6 Summ	nary	81
Chapter 5 Co	onclusion and Future Work	82
5.1 Conclusion		
5.2 Future Work		
REFERENCES8		

ppendix A87	7
P P • 1. 0 · 1. 1 · 1.	

LIST OF TABLES

Table 2-1: Random Road Irregularity Classes
Table 3-1 Fuzzy Inference System rule base of QVASS
Table 3-2: Fuzzy Inference System Rule Base of Front HVASS
Table 4-1: Linear Quarter Vehicle Suspension Model Parameters
Table 4-2: PSO Initialization Parameters of Linear QVASS for of Single Bump Road 40
Table 4-3: RMS %Reduction Values due to Single Bump Road for Linear QVSS 42
Table 4-4: PSO Initialization Parameters of Linear QVASS for Double Bump Road 43
Table 4-5: RMS %Reduction Values due to Double Bump Road for linear QVSS 44
Table 4-6: PSO Initialization Parameters of Linear QVASS for Bump and Hole Road. 45
Table 4-7: RMS Reduction Percentages Values due to Bump and Hole Road for linear
Suspension System
Table 4-8: PSO Initialization Parameters of Linear QVASS for Random Bump Road 47
Table 4-9: RMS %Reduction Values due to Random Road for linear QVSS
Table 4-10: Nonlinear Quarter Vehicle Suspension Model Parameters
Table 4-11: PSO Initialization Parameters of Nonlinear QVASS for single Bump Road.
Table 4-12: RMS %Reduction Values due to Single Road for Nonlinear QVSS 51
Table 4-13: PSO Initialization Parameters for Nonlinear QVASS for Double Bump Road.
Table 4-14: RMS %Reduction Values due to Double Road for Nonlinear QVSS 53
Table 4-15: PSO Initialization Parameters of Nonlinear QVASS for Bump and Hole
Road
Table 4-16: RMS %Reduction Values due to Bump and Hole Road for Nonlinear QVSS.
55
Table 4-17: PSO Initialization Parameters of Nonlinear QVASS for Random Bump Road.
Table 4-18: RMS %Reduction Values due to Bump and Hole Road for Nonlinear
QVSS
Table 4-19: Linear Half Vehicle Suspension Model Parameters
Table 4-20: PSO Initialization Parameters of Linear HVASS for single Bump Road 59
$Table\ 4-21: RMS\ \% Reduction\ Values\ due\ to\ Single\ Bump\ Road\ for\ linear\ HVSS.\\ 61$
Table 4-22: PSO Initialization Parameters of Linear HVASS for Double Bump Road 61
Table 4-23: RMS %Reduction Values due to Double Bump Road for linear HVSS 64
Table 4-24: PSO Initialization Parameters of Linear HVASS for Bump and Hole Road. 64
Table 4-25: RMS % Reduction Values due to Bump and Hole Road for linear HVSS \dots 66
Table 4-26: PSO Initialization Parameters of Linear HVASS for Random Bump Road. 67
Table 4-27: RMS %Reduction Values due to Random Road for linear HVSS 69
Table 4-28: Nonlinear Half Vehicle Suspension Model Parameters

Table 4-29: Initialization Parameters for Nonlinear HVASS for single Bump Road 70
Table 4-30: RMS % Reduction Values due to Single Bump Road for Nonlinear HVSS. 72
Table 4-31: PSO Initialization Parameters for Nonlinear HVASS for Double Bump Road
Table 4-32: RMS %Reduction Values due to Double Bump Road for Nonlinear HVSS.
Table 4-33: PSO Initialization Parameters of Nonlinear HVASS for Bump and Hole
Road75
Table 4-34: RMS % Reduction Values due to Bump and Hole Road for Nonlinear HVSS.
Table 4-35: PSO Initialization Parameters of Nonlinear HVASS for Random Bump Road.
Table 4-36: RMS % Reduction Values due to Random Bump Road for Nonlinear HVSS.
80

LIST OF FIGURES

Figure 1.1: Vehicle's Suspension System.	1
Figure 1.2: Passive Suspension System.	2
Figure 2.1: Linear Quarter Vehicle Model	10
Figure 2.2: Nonlinear Quarter Vehicle Model	11
Figure 2.3: Linear Half Active Vehicle Suspension System Model	15
Figure 2.4: Nonlinear Half Vehicle Suspension System Model	18
Figure 2.5: Single Bump Road Disturbance.	19
Figure 2.6: Double Bump Road Disturbance	20
Figure 2.7: Bump and Hole Road Irregularity	20
Figure 2.8: Stochastic Road Disturbance	21
Figure 3.1: PSO- tuning Algorithm	25
Figure 3.2: PSO-tuning Mechanism	26
Figure 3.3: Basic Structure of PID controller	27
Figure 3.4: ID - Controlled Linear Quarter Vehicle Active Suspension	28
Figure 3.5: PID - Controlled Linear Half Vehicle Active Suspension	28
Figure 3.6: Basic Structure of Fuzzy Logic Controller	35
Figure 3.7: Membership functions of the input and the output variables	36
Figure 3.8: PSO-tuning Mechanism for the Fuzzy Logic Controllers	37
Figure 4.2: Body Acceleration of Linear QVSS for Single Bump Road	41
Figure 4.1: Body Displacement of Linear QVSS for Single Bump Road	41
Figure 4.3: Suspension Deflection of Linear QVSS for Single Bump Road	41
Figure 4.4: Figure 4.4 Tire Deflection of Linear QVSS for Single Bump Road	42
Figure 4.5: Body Displacement of Linear QVSS for Double Bump Road	43
Figure 4.6: Body Acceleration of Linear QVSS for Double Bump Road	43
Figure 4.7: Suspension Deflection of Linear QVSS for Double Bump Road	44
Figure 4.8: Figure 4.8 Tire Deflection of Linear QVSS for Double Bump Road	44
Figure 4.9: Body Displacement of Linear QVSS for Bump and Hole Road	45
Figure 4.10: Body Acceleration of Linear QVSS for Bump and Hole Road	45
Figure 4.11: Suspension Deflection of Linear QVSS for Bump and Hole Road	46
Figure 4.12: Tire Deflection of Linear QVSS for Bump and Hole Road	46
Figure 4.13: Body Displacement of Linear QVSS for Random Road	47
Figure 4.14: Body Acceleration of Linear QVSS for Random Road	47
Figure 4.15: Suspension Deflection of Linear QVSS for Random Road	48
Figure 4.16: Tire Deflection of Linear QVSS for Random Road	48
Figure 4.17: Body Displacement of Nonlinear QVSS for Single Bump Road	50
Figure 4.18: Body Acceleration of Nonlinear QVSS for Single Bump Road	50
Figure 4.19: Suspension Deflection of Nonlinear QVSS for Single Bump Road	50
Figure 4.20: Body Acceleration of Nonlinear QVSS for Single Bump Road	51
Figure 4.21: Body Displacement of Nonlinear QVSS for Double Bump Road	52

Figure 4.22: Body Acceleration of Nonlinear QVSS for Double Bump Road	. 52
Figure 4.23: Suspension Deflection of Nonlinear QVSS for Double Bump Road	. 53
Figure 4.24: Tire Deflectiont of Nonlinear QVSS for Double Bump Road	. 53
Figure 4.25: Body Displacement of Nonlinear QVSS for Bump and Hole Road	. 54
Figure 4.26: Body Acceleration of Nonlinear QVSS for Bump and Hole Road	. 54
Figure 4.27: Suspension Deflection of Nonlinear QVSS for Bump and Hole Road	. 55
Figure 4.28: Tire Deflection of Nonlinear QVSS for Bump and Hole Road	. 55
Figure 4.29: Body Displacement of Nonlinear QVSS for Random Bump Road	. 56
Figure 4.30: Body Acceleration of Nonlinear QVSS for Random Bump Road	. 56
Figure 4.31: Suspension Deflection of Nonlinear QVSS for Random Bump Road	. 57
Figure 4.32: Tire Deflection of Nonlinear QVSS for Random Bump Road	. 57
Figure 4.33: Body Acceleration of Linear HVSS for Single Bump Road	. 59
Figure 4.34: Pitch Angle Acceleration of Linear HVSS for Single Bump Road	. 59
Figure 4.35: Front Suspension Deflection of Linear HVSS for Single Bump Road	. 60
Figure 4.36: Rear Suspension Deflection of Linear HVSS for Single Bump Road	. 60
Figure 4.37: Front Tire Deflection of Linear HVSS for Single Bump Road	. 60
Figure 4.38: Rear Tire Deflection of Linear HVSS for Single Bump Road	. 61
Figure 4.39: Body Acceleration of Linear HVSS for Double Bump Road	. 62
Figure 4.40: Pitch Angle Acceleration of Linear HVSS for Double Bump Road	. 62
Figure 4.41: Front Suspension Deflection of Linear HVSS for Double Bump Road	. 62
Figure 4.42: Rear Suspension Deflection of Linear HVSS for Double Bump Road	. 63
Figure 4.43: Front Tire Deflection of Linear HVSS for Double Bump Road	
Figure 4.44: Rear Tire Deflection of Linear HVSS for Double Bump Road	. 63
Figure 4.45: Body Acceleration of Linear HVSS for Bump and Hole Road	. 64
Figure 4.46: Pitch Angle Acceleration of Linear HVSS for Bump and Hole Road	. 65
Figure 4.47: Front Suspension Deflection of Linear HVSS for Bump and Hole Road	. 65
Figure 4.48: Rear Suspension Deflection of Linear HVSS for Bump and Hole Road	. 65
Figure 4.49: Front Tire Deflection of Linear HVSS for Bump and Hole Road	
Figure 4.50: Rear Tire Deflection of Linear HVSS for Bump and Hole Road	. 66
Figure 4.51: Body Acceleration of Linear HVSS for Random Road.	. 67
Figure 4.52: Pitch Angle Acceleration of Linear HVSS for Random Road	. 67
Figure 4.53: Front Suspension Deflection of Linear HVSS for Random Road	. 68
Figure 4.54: Rear Suspension Deflection of Linear HVSS for Random Road	. 68
Figure 4.55: Front Tire Deflection of Linear HVSS for Random Road.	. 68
Figure 4.56: Rear Tire Deflection of Linear HVSS for Random Road	. 69
Figure 4.57: Body Acceleration of Nonlinear HVSS for Single Bump Road	. 70
Figure 4.58: Pitch Acceleration of Nonlinear HVSS for Single Bump Road	. 71
$Figure\ 4.59:\ Front\ Suspension\ Deflection\ of\ Nonlinear\ HVSS\ for\ Single\ Bump\ Road$. 71
$Figure\ 4.60:\ Rear\ Suspension\ Deflection\ of\ Nonlinear\ \ HVSS\ for\ Single\ Bump\ Road$. 71
Figure 4.61: Front Tire Deflection of Nonlinear HVSS for Single Bump Road	. 72

Figure 4.62: Rear Load carrying of Nonlinear HVSS for Single Bump Road
Figure 4.63: Body Acceleration of Nonlinear HVSS for Double Bump Road73
Figure 4.64: Pitch Angle Acceleration of Nonlinear HVSS for Double Bump Road 73
Figure 4.65: Front Suspension Deflection of Nonlinear HVSS for Double Bump Road. 74
Figure 4.66: Rear Suspension Deflection of Nonlinear HVSS for Double Bump Road 74
Figure 4.67: Front Tire Deflection of Nonlinear HVSS for Double Bump Road74
Figure 4.68: Rear Tire Deflection of Nonlinear HVSS for Double Bump Road75
Figure 4.69: Body Acceleration of Nonlinear HVSS for Bump and Hole Road76
Figure 4.70: Pitch Angle Acceleration of Nonlinear HVSS for Bump and Hole Road 76
Figure 4.71: Front Suspension Deflection of Nonlinear HVSS for Bump and Hole Road.
Figure 4.72: Rear Suspension Deflection of Nonlinear HVSS for Bump and Hole Road.
77
Figure 4.73: Front Tire Deflection of Nonlinear HVSS for Bump and Hole Road 77
Figure 4.74: Rear Tire Deflection of Nonlinear HVSS for Bump and Hole Road 77
Figure 4.75: Body Acceleration of Nonlinear HVSS for Double Bump Road
Figure 4.76: Pitch Angle Acceleration of Nonlinear HVSS for Random Bump Road 79
Figure 4.77: Front Suspension Deflection of Nonlinear HVSS for Random Bump Road.
Figure 4.78: Rear Suspension Deflection of Nonlinear HVSS for Random Bump Road.
Figure 4.79: Front Tire Deflection of Nonlinear HVSS for Random Bump Road 80
Figure 4.80: Rear Tire Deflection of Nonlinear HVSS for Random Bump Road

NOMENCLATURE

Acronyms

ASS Active Suspension System

HVASS Half Vehicle Active Suspension System

HVSS Half Vehicle Suspension System

PID Proportional Integral Derivative

PSO Particle Swarm Optimization

PSS Passive Suspension System

QVASS Quarter Vehicle Active Suspension System

QVSS Quarter Vehicle Suspension System

RMS Root Mean Square

Greek Symbols

lpha Factor Depends on the road surface rad/s $heta_s$ Pitch Angle of Sprung Mass rad

 ρ Relative degree of the output signal w.r.t the disturbance signal

Roman Symbols

A Gaussian White Noise

*c*₁ Individual Weight

*c*₂ Sociality Weight.

 C_s Suspension Damping Coefficient N.s/m

C_{sf} Front Suspension Damping Coefficient N.s/m

 C_{sr} Rear Suspension Damping Coefficient N.s/m

 C_t Tire Damping Coefficient N.s/m

d Problem Dimensions

e Error Signal

h , h_1 , and h_2	Bump Height	m
i	Number of iterations	
I_s K_d	Pitch moment of inertia Derivative Gain	Kg
K_i	Integral Gain	
K_{ls} K_{ns}	Linear Component of Suspension Stiffness Coefficient Nonlinear Component of Suspension Stiffness Coefficient	N/m N/m^3
K_p	Proportional Gain	
K_s	Suspension Stiffness Coefficient	N/m
K_{sf}	Front Suspension Stiffness Coefficient	N/m
$K_{sf}^{\ nl}$	Front Suspension Nonlinear Stiffness Coefficient	N/m^3
K_{sr}	Rear Suspension Stiffness Coefficient	N/m
$K_{sr}^{\ nl}$	Rear Suspension Nonlinear Stiffness Coefficient	N/m^3
K_t	Tire Stiffness Coefficient	N/m
K_{tf}	Front Tire Stiffness Coefficient	N/m
K_{tr}	Rear Tire Stiffness Coefficient	N/m
L	Distance between the axle	m
L_{I}	Distance from Front Suspension Location to C.G. of the Sprung Mass Distance from Rear Suspension Location to C.G. of the	m
L_2	Sprung Mass	m
M_s	Sprung Mass	Kg
M_s	Sprung Mass	Kg
M_t	Unsprung Mass	Kg
M_{tf}	Front Unsprung Mass	kg
M_{tr}	Front Unsprung Mas	Kg
p_{gd}	Particle's Global Best Solution	
Pid	Particle's Local Best Solution	
r	Relative degree of the output signal w.r.t the input signal	