

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

Ain Shams University Faculty of Education Physics Department

Title of thesis

B5610

Theoretical study of Defects In Ionic crystals

Name of Student: Gehan Hassan Ismail

Supervised By

Approved

1) Prof. Dr. MOHAMED AHMED KAMEL

Prof. of Theoretical Physics, Vice Dean Faculty of Education Ain Shams University

2) Prof. Dr. AHMED SAEED MOHAMED SHALABI

Prof. of Theoretical Chemistry, Faculty of Science Zagazig University (Benha)

3) Dr. ATEF MOHAMED EL MAHDY

Lecturer of Theoretical Physics, Faculty of Education Ain Shams University

Prof. Dr. MOHSEN RADY NAGY
Head of the Physics Department, Faculty of Education
Ain Shams University

Contents

TOPIC:	Page
Acknowledgment	1
Aim of study	2
Abbreviations used	3
List of Figures	4
List of Tables	6
Summary	8
Chapter 1: Introduction	
1.1: The Self-Trapped Hole (STH).	11
1.2: Literature Review	13
1.3: The Electronic Problem	22
1.4: Orbitals and Slater Determinants	27
1.5: The Hartree-Fock Theory	31
1.6: The Many-Body Perturbation Theory	37
Chapter 2: Reorientation of Self-Trapped Hole STH and adsorptivity of atomic Hydrogen on (001) surface: ab initio study.	43
2.1: Introduction	44
2.2: Crystal Simulation.	46
2.3: Calculations.	48

AIM OF STUDY

The aim of the present study is twofold. First, to report the results of the first calculations of the doublet ground state configurations of the self trapped hole (STH) in LiH, the results of the UHF-SCF and MP2 calculations on an electronically inert (001) surface of an insulator LiH, and the effect of introducing the surface STH on modifying the nature of adsorbate-substrate interaction. Second, to examine how close are the energetic properties of the bulk and surface orientations of STH in LiF and NaH isoelectronic crystals, and how close are the energetics of atomic H adsorption and band structure of the relevant surfaces.

Abbreviations and Acronyms

Symbol	Acronyms			
НОМО	Highest Occupied Molecular Orbital.			
LUMO	Lowest Unoccupied Molecular Orbital.			
SOMO	Singly Occupied Molecular Orbital.			
SOAO	Singly Occupied Atomic Orbital.			
STH	Self –Trapped Hole.			
STE	Self-Trapped Exciton.			
LDOS	Local Densities Of States.			
E_{ads}	Adsorption Energy.			
MP_2	Møller-Plesset Second orders perturbation correction.			
UHF	Unrestricted Hartree Fock			
ICECAP	Ionic Crystal with Electronic Cluster: Automated Program.			
RHF	Restricted Hartree Fock			
SCF	Self-consistent Field.			

LIST OF FIGURES

Fig.No.	Fig. Caption		
(1.1)	Schematic structure for an a V_k center in alkali halides.	12	
(1.2)	A molecular coordinate system: i,j = electrons; A,B = nuclei.	22	
(2.1)	Representation of the $z = 0$ plane of the lattice used in the calculations.	56	
(2.2)	Original STH orientation, on- and off- orientations of STH, optimal relaxation mode and substrate location Δ in units of $2\sqrt{2}$ R.	57	
(2.3)	Equilibrium adsorption energies of atomic H on : (a) undefected, and (b) defected (on $-$ STH) surfaces of LiH as a function of the substrate location Δ .	55	
(2.4)	Tops of valance bands and bottoms of conduction bands for H, defect-free surface and defect-containing surface of LiH.	59	
(3.1)	Original STH orientation, on- and off- orientations, optimal relaxation mode and substrate sites Δ of LiF and NaH isoelectronic clusters in crystals.	74	

(3.2)	Electrostatic potential curves over the defect free and defects containing surfaces of NaH and LiF.	75
(3.3)	The adsorptivity of atomic H over the defect free and defect containing surfaces of NaH and LiF as a function of the diffusion path Δ .	76
(3.4)	Tops of valence bands and bottoms of conduction	.: · 77
	bands for H defect free surface and defect containing surface of NaH and LiF.	(2
		(2.2
	•	(2.3
		3)

LIST OF TABLES

No.	Table	Page
(2.1)	Specification of the finite lattice used for crystal bulk calculations. R is half the lattice distance, which for LiH is 2.04Å. r, is the distance of the appropriate shell from the center of the lattice.	60
(2.2)	Geometrical and energetic parameters of STH's in LiH calculated at the SCF and MP2 levels. The equilibrium internuclear bonds Re are given in Å and the total electronic energies E_e in Hrtrees. Subscripts: (f): free, (b): bulk, (s): surface Synonyms: STH-on: D_{2h} or Two-center configuration. STH-off: C_{2v} or One center configuration.	61
(2.3)	Data for the adsorbate-substrate interactions of atomic H on the undefected and defected surfaces of LiH. Δ : Substrate location. R_c : equilibrium adatom substrate distance in Å. E_{ads} : adsorption energy in Hartree. Adsorbed-substrate interactions are symmetrical about Δ =0.5.	62
(3.1)	Geometrical and energetic parameters of STHs in LiF and NaH calculated at the MP_2 level. The equilibrium internuclear bonds R_e are given in Å and the total electronic energies E_e in Hartrees. Subscripts: f: free, b: bulk, s: surface Synonyms: STH-on: D_{2h} or two center configuration. STH-off: C_{2v} or one center configuration.	78

(3.2) Data for the adsorptivity of atomic H on the 79 defect free and On-STH defect containing surfaces of LiF and NaH.

 Δ : substrate site.,

Re: equilibrium adatom substrate distance in Å.

 $E_{ads.}$: adsorption energy in eV.