Recent Trends in Biometry

Essay
Submitted for partial fulfillment of the Master degree
In Ophthalmology

Presented By Gina Galal El-Dine El Sherbini M.B., B.Ch.

Under Supervision of

Prof. Dr. Shaker Ahmed Khedr

Professor of Ophthalmology Faculty of Medicine Ain Shams University

Prof. Dr. Mamdouh Hamdy Elkafrawy

Professor of Ophthalmology Faculty of Medicine Ain Shams University

Cairo 2007

التقنيات الحديثة لقياس قوة العدسة المنزرعة داخل العين

مقدمة من

الطبيبة/ چينا جلال الدين الشربيني بكالوريوس الطب و الجراحة توطئة للحصول على درجة الماجستير في طب وجراحة العيون

تحت إشراف

الأستاذ الدكتور/ شاكر أحمد خضر

أستاذ طب وجراحة العيون كلية الطب _ جامعة عين شمس

الأستاذ الدكتور/ ممدوح حمدي الكفراوي

أستاذ طب وجراحة العيون كلية الطب _ جامعة عين شمس

> القاهرة 2007

Acknowledgement

الحمد لله رب العالمين

First, my deepest gratitude and thanks to **Allah** for achieving any work in my life.

I would like to offer my great thanks and appreciation to **Prof. Dr. Shaker Ahmed Khedr** Professor of Ophthalmology, Faculty of Medicine Ain Sham University, for his continuous encouragement, sincere advice and kind supervision during this work.

I am deeply grateful to Prof. Dr. Mamdouh Hamdy Elkafrawy Professor of Ophthalmology, Faculty of Medicine Ain Sham University, who devoted his time, effort and experience to facilitate the production of this work.

I am also delegated to express my deep gratitude and thanks to my family who gave me help and assisted me in finishing this work.

List of Figures

Fig.	Subject	Page
1	Photograph of ridley's eight IOL implantation	2
2	Relationship between the anterior and posterior	34
	corneal curvatures	
3	Change after RK	34
4	Change after excimer photoablation	34
5	Change after hyperopic excimer photoablation	35
6	High quality contact A-Scan of the phakic eye	48
7	When sound beam incidence is	49
	perpendicular/non-perpendicular to the visual	
	axis	
8	When sound beam strikes smooth/	50
	convex/irregular macular surface	
9	When Gain setting is too high	51
10	Gates are electronic calipers on the display	52
11	Hansen shell	56
12	Prager shell	56
13	Kohn shell	57
14	The cup is placed between the lids	57
15	The ultrasound probe is immersed in the	57
	solution	
16	During immersion biometry, visual axis	60
	alignment is easier to achieve	
17	Ultrasound display of the different echo spikes	61
	during immersion biometry	
18	A-Scan display of a phakic eye identifying	62
	corneal, lens and retinal spikes	
19	Contact A-Scan biometry	64
20	The small solid probe fits in the tonometer	65
	holder for A-Scan Biometry	
21	A-Scan display of a phakic eye measured with	65
	contact A-Scan biometry	

List of Figures (Cont.)

Fig.	Subject	Page
22	IOLMaster machine and the ultra sound	75
	machine	
23	The IOLMaster	76
24	Operating principale of IOLMaster	77
25	Optical interference pattern generated by the	78
	IOLMaster biometric system	
26	Partial coherence interferometry measurement	79
	of the axial length of a cataract eye parallel to	
	the vision axis	
27	Slit-lamp illumination shows posterior	84
	subcapsular cataract	
28	Slit-lamp illumination shows nuclear, cortical	84
	and posterior subcapsular cataract	
29	Mature cataract	85
30	Hypermature cataract	85
31	Nuclear and cortical cataract	86
32	Nuclear cataract	87
33	Ultrasound B-scan/distinct slaphyloma	89
34	Ultrasound B- Scan/ central retinal detachment	90
35	The high peak in the vitreous/ detached retina	90
36	Ultrasound B-scan/ focal macular oedema	91
37	Cystoid macular oedema	92
38	A Scan showing the RSS	94

List of Tables

Table	Subject	Page
1	Example of the refractive error formula	7
2	Recommended IOL calculation formulae depending on the axial length of the eye	19
3	The ultrasound velocities for the various parts of the eye, IOL materials, and average pseudophakic velocities	44
4	Formulas for calculating biometric parameters	47

List of Abbreviation

AC : Anterior chamber

ACD : Anterior chamber depth AK : Automated keratometer

AL : Axial length

ALK : Automated lamellar keratoplasty

A-Scan : Amplitude scan

BC : Base curve B-mode : Basic scan

BSS : Balanced salt solution

CDC : Centers for disease control and prevention

CALF : Corrected axial length factor

CHM : Clinical history method

CL : Coherence length

CL : Contact lens

D : Diopter d : Distance

ECCE : Extra capsular cataract extraction

ELP : Effective lens position

ESF : Estimated scaling factor

HZ: Hertz

ICCE : Intra capsular cataract extraction

ILM : Internal limiting membrane

IOL : Intraocular lens

IUS : Immersion ultrasound

K : Coneal refractive power in D

KHZ: Kilohertz

K-reading: Kertometry reading

List of Abbreviation (Cont.)

K-values : Keratometry values

LASIK : Laser assisted in situ keratomileusis

LD : Laser diode

LIB : Laser interference biometry

LOCS III : Lens opacity classification system III

LOCS III P : posterior subcapsular cataract

LOCS III No : Nuclear opalescence LOCS III C : cortical cataract

m/ sec : Meters/second

µm : Micrometer

mm : Millimeter

µw : Microwatt

P : IOL power in I

P : IOL power in D PC : Posterior chamber

PCI : Partial coherence interferometry PRK : Photorefractive keratoplasty

PHD: Photodetector

PMMA : Polymethylmethacrylates PRL : Phakic refractive lens

PSC : Posterior subcapsular cataract

P-Scale : Posterior subcapsular cataract scale

R : Refractive error RK : Radial keratotomy

RPE : Retinal pigment epithelium

RSS : Retrosilicone space.
SF : Surgeon factor
SNR : Signal to noise ratio

SRK : Sanders, Retzlaff and Kraff

t : Time

IR : Index of refraction

US : Ultrasound V : Velocity

ZIOLM : Zeiss IOLMaster

Contents

Protocol	
List of abbreviations	
List of tables	
List of figures.	
Introduction	1
Chapter 1:	
Preoperative selection of IOL power	6
• Targeting postoperative refraction in pseudoph	nakic
Eyes	23
• Factors affecting postoperative refraction	
in pseudophakic eyes	27
Chapter 2:	
Corneal power (keratometry)	30
• A- scan biometry	43
• IOL position (anterior chamber depth)	69
Chapter 3:	
• A novel approach to biometry in cataract surge	ery
(PCI)	74
Summary	100
References	102
Aughio Commons	

Introduction

Harold Ridley's invention of the intraocular lens has had a major impact on the specialty of ophthalmology, both in terms of how its implantation is practiced and of benefit to patients (**Ridley**, 1952).

Cataracts had been treated for centuries using various forms of intra and extracapsular extraction (ICCE,ECCE). Avoidance of complications and attaining a high quality postoperative visual rehabilitation remained a difficult problem. The classic means of correcting postoperative aphakia with thick spectacles had been less than satisfactory because of visual distortions and aberrations inherent in high-powered lenses (**Ridley, 1984**).

Modern cataract surgery is not only a means of removing and replacing an opaque lens, it is now essentially a refractive procedure. With appropriate lens power calculations, sometimes combined with corneal molding via incisions or suture alterations, a patient's refractive error can be eliminated (**Apple and Sims, 1996**).

Ridley's first IOL operation was performed on a 45-year-old woman at St. Thomas' Hospital in London on November 29, 1949. The cataractous crystalline lens substance was removed by ECCE and the biconvex IOL was placed behind the iris onto the anterior surface of the posterior capsule. Ridley did this first implant in two stages—first the ECCE,

then the implant three months later. His goal was to ensure that the eye was quiet after the ECCE so as to not to compound and confine any reaction caused by the implant itself (Apple et al, 1989).

Because the calculations for the anterior-posterior dimensions of the Ridley IOL were apparently based on measurements of the human crystalline lens, not properly accounting for the differences in refractive index between human lens protein and plastic, the initial lens was too thick. The first patient's refraction revealed a high myopic overcorrection of over 14 diopters. However, her central Snellen visual acuity still improved to 20/60 (**Apple et al, 1989**).

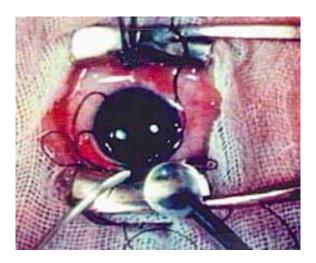


Fig. (1). Photograph extracted from an original film and subsequent video tape of Ridley's eighth IOL implantation, performed at St. Thomas' Hospital, May 8, 1951. Although the film is aged and the clarity is imperfect, the plastic biconvex disk is clearly visible in the upper center of the photograph held by forceps. The lens opacity has been removed by ECCE and the actual Insertion is occurring. This patient had 20/20 vision postoperatively. Note the relatively large 5 - 0 silk sutures and the gauze meshwork covering the operating field (Quoted from Apple and Sims, 1996).

Now, however, patients often expect 20/20 or better uncorrected visual acuity. Although good surgical techniques with low complication rates are important, biometry is often the most critical factor in obtaining the expected refractive result (Connors et al, 2002). Preoperative biometry can be performed in the outpatient clinic at the patient's first visit or at designated preadmission clinics (Heatley et al, 2002).

optimize the To accuracy of predicting the postoperative refraction, formulas have been developed to calculate IOL power on the basis of preoperative measurement of intraocular distances. especially axial keratometry. The most critical step is precise preoperative measurement of the axial length. A measurement error in axial length of 100 µm is estimated to result in a corresponding postoperative error of approximately 0.28 diopter (D) (Findl et al, 2003).

Fifty-four percent of the error in predicted refraction after IOL implantation is attributed to errors in axial length measurements, 8% to corneal power measurement error, and 38% to errors in the estimation of the postoperative anterior chamber depth (ACD) (Olsen, 1992). Errors in axial length measurement can result from combination of bias and imprecision (Hennessy et al, 2003).

Ridley's final choice of biomaterials for his invention was PMMA. He explains why: PMMA was light, with almost the same specific gravity, 1.09, as aqueous humor; so this material was chosen by good fortune for the very first lens implant at St. Thomas' Hospital (**Apple and Sims, 1996**).

Generations are:

- I Ridley lens, 1949
- II Early anterior chamber lenses, 1952-1962
- III Iris supported lenses, 1953 1973
- IV Modern anterior chamber lenses, 1963-present.
- V Modern posterior chamber lenses, 1975-present.
- VI Capsular intraocular lenses designed specifically for Implantation into the lens capsular bag, including both standard PMMA designs and pliable soft (foldable or expansile) IOLs (**Apple and Sims, 1996**).

In addition to the standard anterior and posterior chamber lenses used after cataract surgery, there are phakic lenses, occluder lenses, iris lenses, telescopic lenses, and other specialty lenses to accommodate any size eye in almost any situation (Holladay, 2001).

Today, the quality of corneal refractive procedures is improving. However, lens-related procedures are getting more popular. They include phakic intraocular lenses and a procedure like clear lens extraction with high power lens implantation. Clear lens extraction causes a loss of accommodation but is preferred if the patient is older than 45 years or has any degree of cataract (**Singh, 2005**).

Myopia can be corrected by 3 different means, as follows:

- 1- Optical devices (ie, glasses, contact lenses).
- 2- Corneal refractive procedures (ie, radial keratotomy [RK], automated lamellar keratoplasty [ALK],

- photorefractive keratoplasty [PRK], laser-assisted in situ keratomileusis [LASIK]
- 3- Intraocular procedures (ie, clear lens extraction with or without lens implantation and the use of phakic intraocular lens [IOL] implants). (Verma, 2005).

At the extremes of myopia, implantation of a weak or even plano posterior chamber intraocular lens (IOL) is considered preferable to aphakia because it reduces complications associated with posterior capsule opacification (Badr et al, 1995).

However, precise biometry prediction in extremely long eyes requiring concave lenses has always been difficult (**Kohnen and Brauweiler, 1996**). The increasing popularity of clear lens extraction has brought increased expectations of predictable postoperative refraction with IOLs used in refractive surgery for high myopia (**Duffey and Leaming, 2003**).

Refractive surgery by phakic IOLs among the hyperopes is not as popular as in myopes, simply because it has not been available as long (Singh, 2005).

Preoperative Selection of IOL Power

1-Estimations of intraocular lens power based on the basic refraction of the eye

Experience has shown that when the basic refraction is accurate, a reasonable prediction of implant power is possible. However, there are many pitfalls in estimating the basic refraction. A reliable history of the refractive status before the onset of cataract is not always available (**Stenström**, **1946**).

Also, the main components of the refraction of the eye (power of the cornea, depth of the anterior chamber, power of the lens, and axial length of the eye) show relatively little correlation between their normal range and the refraction in emmetropia as well as in ametropia. For example, the removal from the eye of a crystalline lens whose power is at either extreme of the normal range (15.5 to 23.9 D, mean = 19.7D) may alter the refraction by significantly different amounts (Sorsby, 1971).

Thus an error is possible if it is assumed that a standard power IOL exists that will retain emmetropia in an emmetropic eye after lens implantation. Furthermore, to achieve emmetropia or the preoperative basic refractive error, the power of the IOL should be less than that of the crystalline lens, since the IOL is in a more forward position than the crystalline lens (Sorsby, 1971).