Vital Organ Preservation during Surgery for Congenital Heart Disease in Children

An Essay for Partial Fulfillment of Master Degree in Anesthesia

Prepared By **Haifa Nasser Ali**MBBCH

Faculty of Medicine, Sana'a University

Under Supervision of

Prof. Dr. Azza Mohamed Ezzat

Professor of Anesthesiology Faculty of Medicine Cairo University

Dr. Ahamed Ehsan ELAgaty

Assistant Professor of Anesthesiology Faculty of Medicine Cairo University

Dr.Ahamed Mohamed Mukhtar

Lecturer of Anesthesiology Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University 2008

Dedication

This work is dedicated to my great mother, my father and rest of my family who stood beside me through my entire life and gave me all the support.

Dear mother nothing deserve to be back for your great deed.

Thank you for every thing.

ACKNOWLEDGEMENTS

Thanks for God for giving me the power and strength to carry out this work.

Words stand short where they come to express my gratefulness to my supervisor.

I would like to record my heart felt thanks and sincere gratitude to **Prof Dr. Azza Mohammed Ezzat** Professor of anesthesiology, Faculty of Medicine, Cairo University for her remarkable effort, considerable help and her continuous guidance which were the major factor behind the completion of this work.

My deep gratitude goes to her faithful methodical supervision, great cooperation and her generosity in revision this work and offered me a great help.

My deep gratitude goes for Assistant Prof Dr. Ahamed Ehsan El Agaty, Faculty of Medicine, Cairo University supervision. He generously offered me a great help through his enormous support and encouragement.

My deep gratitude goes for lecturer of anesthesiology *Dr. Ahmed*Mohamed Mukhtar Faculty of Medicine Cairo University for his valuable advice. I would like to express my great thanks to all member of my family especially my mother and my father for providing love and care.

ABSTRACT

The incidence of congenital heart disease is 2-10 cases per 1000 live births. Management of CHD emphasize early complete repair before the heart adapt to the abnormal physiology.

Nevertheless despite improve surgical technique, children still succumbs to post-operative multiple organ failure with significant impact on short-long term outcome.

Improve of outcome of surgery requires identify patients vulnerable to organ failure, modifying perioperative risk factors and other effective intervention for organ preservation during surgery.

(Key Word)

Cardiopulmonary bypass

Deep hypothermia

Circulatory arrest

Organ preservation strategies

List of Content

		Page
•	List of Tables .	II
•	List of figures .	III
	List of Abbreviations .	V
•	Introduction.	1
•	Aim of the Work.	2
•	Chapter 1: Cardiopulmonary by pass in infants and children: How is it different.	3
•	Chapter 2: Physiology and techniques of Extracorporeal Circulation in the Pediatric Patient.	11
•	Chapter 3: The Inflammatory Process and the Effects of Cardiopulmonary by pass.	33
•	Chapter 4: Profound Hypothermia and Circulatory Arrest.	59
•	Chapter 5: Vital Organ Preservation During Surgery For Congenital Heart Disease.	69
•	Summary	101
•	References	103
•	Arabic Summary	

List of Tables

		Page
Table 1:	Immature Versus Adult Myocardium	6
Table 2:	Differences in Neonatal and Adult Heart Physiology.	7
Table 3:	Differences between Adult and Pediatric (CPB).	10
Table 4:	Estimated Blood Volume (EBV) Comparison.	28
Table 5 :	Inflammatory trigger and mediators during CBP Bypass.	33
Table 6:	Factors Influencing Neurologic Injury.	83
Table 7:	Developmental Signature of Neurologic Injury After Congenital Heart Surgery.	84

List of Figures

		Page
Figure 1 :	Typical CBP Circuit.	11
Figure 2 :	Arterial Canulation and Venous Canulation.	15
Figure 3 :	Typical double-Headed nonocclusive roller pump.	16
Figure 4 :	hollow-fiber micro porous membrane oxygenator.	18
Figure 5 :	Micropore Filters	22
Figure 6 :	Schematic representation of the coagulation and fibrinolytic systems.	34
Figure 7 :	Schematic representation of the complement system activation.	36
Figure 8 :	Simplified hypothetical diagram of the multi- step model of leukocyte interaction with inflamed vascular endothelium.	41

Figure 9:	systemic inflammatory response syndrome	43
	following extracorporeal circulation, leading	
	to multisystem organ failure.	
Figure 10 :	Treatment options of the	50
	inflammatory response to	
	cardiopulmonary bypass (CPB).	
	MSOF, multisystem organ failure;	
	TNF-a, tumor necrosis factor-a.	
Figure 11:	Near-Infrared Spectroscopy.	86

LIST OF ABBREVIATIONS

A-aO2	Gradient alveolar - arterial oxygen gradient
ACP	Antegrade cardioplegia
ARF	Acute renal failure
ACT	Activated clotting time
ADP	Adenosine diphosphate
AT III	Antithrombin III
ATP	Adenosine trinhosphate
BAR	β-adrenergic receptor
BIS	Bispectral index
CBFV	Cerebral blood flow velocity
CHD	Congenital heart disease
CNS	Central nervous system
CRP	C-reactive protein
cNOS	Constitutive nitric oxide syntheses
CMRO ₂	Cerebral metabolic rate of oxygen consumption
CLS	Capillary leak syndrome
CPD	Cardiopulmonary by pass
CBF	Cerebral blood flow
CUF	Continuous ultra filtration
CO ₂	Carbon dioxide
DHCA	Deep hypothermic circulatory arrest
DUF	Dilutional ultra filtration

Dexamethasone
Deep hypothermic cardiopulmonary bypass
2,3 diphosphoglycerate
Endothelial leukocyte adhesion motecule-1
Estimated blood volume
Extracorporeal circulation
Electro encephalographs
Electroencephalogram
Fresh frozen plasma
Partial pressure of 02 inspired air
Gram
Glomerular filtration rate
Heart rate
Hematocrit
Heparin-coated
Hydrogen ion
Toxic hydrogen radical
Hypo plastic left heart syndrome
Intensive care unit
Intracellular adhesion molecule
Interleukin
Inducible Nitric oxide syntheses
Interior vena cava
Jugular venous bulb Temperature

K ⁺	Potassium
KDa	Kilogram
LA	Left atrium
LV	Left ventricle
LD	Leukocyte
L	Liter
Lps	Lipopolysaccharide
LPD	Leukocyte and platelet depletion
μg	Microgram
MuF	Modified ultra filtration
mm	Millimeter
MSOF	Multisystem organ failure
mL	Milliliter
MPSS	Methylprednisolone
mmHg	Millimeter of mercury
min	Minute
MCP-1	Monocyte chemo attractant-protein
mEq	Milliequivalent
NA-C	N-acetylcysteine
NEC	Necrotizing enterocolitis
NMDA	N-methyl D-aspratate
NIRS	Near infrared cerebral oximetry
NO	Nitric oxide
O2	Oxygen

ОН	Hydroxide
(HO^0)	Toxic hydroxyl radical
PDA	Patent ductus arteriosus
PAF	Platelet activating factor
PGE ₁	Prostaglandin E ₁
PGE ₂	Prostaglandin E ₂
PTFE	Polytetrafluoroethylene
PK	Dissociation constant
RCP	Retrograde cardioplegia
RV	Right ventricle
RA	Right atrium
RCM	Patient red cell mass
RLFP	Regional low flow cerebral perfusion
SJVO ₂	Jugular Venous bulb oximetry
SCO ₂	Cerebral oxygen saturation
SIRS	Systemic inflammatory response syndrome
SVC	Superior vena cava
SV	Stroke volume
TNF _a	Tumor necrosis factor a
TAT	Thrombin-antithrombin III
TPV	Total priming volume
ZBUF	Zero balance ultra filtration

INTRODUCTION

INTRODUCTION

Congenital cardiac anomalies have been recognized for centuries. However, few or no treatments available until the twentieth century.

The clinical recognition and identification of congenital cardiovascular disease is very important for early management and to avoid untreatable complication.

The pediatric cardiac anesthesiologist must be closely involved with commencing, maintaining, and terminating cardiopulmonary by pass (CPB) circuit to aid the surgeon and per fusionist in diagnosis and treating the problems associated with extracorporeal circulation.

Systemic hypothermia is used during cardiopulmonary by pass (CPB) are generally defined as follows:

Mild, moderate, deep and profound <20 °C. Profound hypothermia circulatory arrest (DHCA) is a technique used to improve exposure of intracardiac defects and to facilitate total correction.

Improved outcome of surgery for congenital heart disease (CHD) depends on early identifying of lesion, modifying the preoperative and intraoperative risk factor, and effective interventions for organ preservation during surgery for CHD.

AIM OF THE WORK