

Investigation of The Dynamic Performance of Six-phase Induction Motors

A thesis submitted for partial fulfillment of the requirements for the M.Sc. degree in Electrical Engineering

Submitted by:

Eng. Mohamed Aref Mahmoud Abdelghani

Supervised by:

Prof. Dr. Hussien Faried El-sayed Soliman

Faculty of Engineering Ain Shams University

Associate Prof. Dr. Ayman Samy Abdel-Khalik

Faculty of Engineering Alexandria University

Dr. El-Hussein Abbas Mahmoud

Department of Offshore Operation ADNOC Drilling

Cairo, 2018

EXAMINERS COMMITTEE

Name: Mohamed Aref Mahmoud Abdelghani

Thesis title: Investigation of the dynamic performance of

six-phase induction motors

Degree: Submitted in partial fulfillment of the

requirements for the M.Sc. degree in Electrical

Engineering

Name, Title and Affiliation

Signature

Prof. Dr. Gaber Elsaady Ahmed Taha

Electrical Power and Machines Department Faculty of Engineering, Assiut University

Prof. Dr. Hussien Faried El-sayed Soliman

Electrical Power and Machines Department Faculty of Engineering, Ain Shams University

Prof. Dr. Ehab Ali Kamel El-Kharashy

Electrical Power and Machines Department Faculty of Engineering, Ain Shams University

Associate Prof. Dr. Ayman Samy Abdel-Khalik

Electrical Power and Machines Department Faculty of Engineering, Alexandria University

SUPERVISORS COMMITTEE

Name: Mohamed Aref Mahmoud Abdelghani

Thesis title: Investigation of the dynamic performance of

six-phase induction motors

Degree: Submitted in partial fulfillment of the

requirements for the M.Sc. degree in Electrical

Engineering

Name, Title and Affiliation

Signature

Prof. Dr. Hussien Faried El-sayed Soliman

Electrical Power and Machines Department Faculty of Engineering, Ain Shams University

Associate Prof. Dr. Ayman Samy Abdel-Khalik

Electrical Power and Machines Department Faculty of Engineering, Alexandria University

Dr. El-Hussein Abbas Mahmoud

Department of Offshore Operation ADNOC Drilling

STATEMENT

This thesis is submitted to Ain Shams University in partial fulfillment

of the requirements of Master of Science degree in Electrical

Engineering.

Date:

The included work in this thesis has been carried out by the author at

the department of electrical power and machines, Ain Shams

University. No part of this thesis has been submitted for a degree or a

qualification at any other university or institution.

Name:	Mohamed Aref Mahmoud Abdelghani
Signature:	

/ 2018

/

ACKNOWLEDGMENT

The author would like to express his sincere gratitiude and respect to

Prof. Dr. Hussien Faried Soliman, Associate Profeessor Dr. Ayman

Abdel-Khalik and Dr. El-Hussien Abbas for their guidance,

continuous encouragement and generous help throughout the

development of this work.

The fruitful discussions with Dr. El-Hussien Abbas during the course

of this thesis are gratefully acknowledged and proved to be fully

useful in helping me generate this thesis.

Acknowledgments are extended to Chairman of Electrical Power and

Machines Department.

The author would also like to express his love, gratitude, and

appreciation to his parents, sisters and friends for their endless love,

encouragement, and patience during the course of this work and

behind. They were the fuel that makes him move, and through the

course, they represent the motive and the passion for me keeping on

and finalizing my course successfully.

Mohamed Abdelghani

Cairo, 2018

1

Table of Contents

EXAMINERS COMMITTEEi				
SUPEF	RVISORS COMMITTEE	ii		
STATI	EMENT	iii		
ACKN	OWLEDGMENT	1		
СНАР	TER 1 INTRODUCTION	18		
СНАР	TER 2 LITERATURE SURVEY	20		
2.1	Introduction	20		
2.2	MPMS' advantages and applications	21		
2.3	Asymmetric 6-phase Ind. M/C	23		
2.4	Multi-phase drive control systems	25		
2.4	1.1 Scalar control	26		
2.4	1.2 Indirect field oriented control	32		
2.4	1.3 Inverter	33		
2.4	4.4 Pulse-width-modulation (PWM)	37		
2.4	4.5 The conventional proportional integral (PI) controller	41		
2.4	A survey on multi-phase drive control systems	43		
2.5	Fault tolerant control	44		
2.6	Torque enhancement using harmonic injection	45		
2.7	Research objectives	47		
CHAP'	TER 3	48		
MACH	IINE MODELLING AND POST-FAULT CONTROI	48		
3.1	Introduction	48		

3.2 N	Sathematical modeling of assymetrical 6-phase IM	50
3.3	Indirect field oriented control algorithm	54
3.4	Fault tolerance	58
3.4	.1 Introduction	58
3.4	.2 Fault effect on machine equations	59
3.4	.3 Effect on torque equation	60
3.4	.4 Post fault mode of operation	60
3.5	Summary	61
CHAP	ΓER 4	62
PROP	OSED CONTROLLER BASED ON FOPI	62
4.1	Introduction	62
4.2	FOPI controller for current regulation	65
4.3	Summary	69
CHAP	ΓER 5	70
SIMUI	ATION AND RESULTS	70
5.1	SIMULINK model of controller scheme	70
5.1	.1 Indirect field oriented control sub-blocks	73
5.1	.2 Forward clarke and park transformations	75
5.1	.3 Rotor flux and angle calculation	76
5.1	.4 Direct reference current calculation	77
5.1	.5 Speed controller	79
5.1	.6 Current regulator	80
5.1	.7 Sinusoidal pulse-width-modulation SPWM and 81	l inverter
5.2	Results and discussion	82
5.2	.1 Speed controller	83

5.2.2	Current controllers	83
5.2.3	Case studies	84
5.2.3.1	First casestudy	85
5.2.3.2	Second casestudy	96
5.2.3.3	Third casestudy	109
5.2.3.4	Fourth casestudy	115
5.3 Su	mmary	121
CHAPTER	6	122
CONCLUSION AND FUTURE WORK		122
REFERENCES		124

LIST OF FIGURES

- Figure 2.1: 6-phase induction machine symmetrical and asymmetrical windings
- Figure 2.2: Induction-motor torque speed characteristics
- Figure 2.3: Schematic of VSI fed V/f controlled 6-phase inductionmotor
- Figure 2.4: An inverter power circuit of a 6-phase voltage source
- Figure 2.5: Asymmetrical 6-phase IND. M/C winding displacement
- Figure 2.6: Principle of SPWM generation
- Figure 2.7: Triangular shaped carrier wave
- Figure 2.8: Line-voltage (rms) as a function of the modulation index
- Figure 2.9: Schematic diagram for the PI controller
- Figure 3.1: 6-phase IM equivalent circuit referenced to the side
- Figure 3.2: IFOC scheme (conventional PI controller for current regulation)
- Figure 4.1: Fractional PID controller coverage
- Figure 4.2: Schematic diagram for the FOPI controller
- Figure 4.3: IFOC scheme (proposed FOPI controller for current regulation
- Figure 5.1: A Complete SIMULINK model of six-phase squirrel cage with asymmetric windings induction-motor

- Figure 5.2: FOC SIMULINK model (Healthy case)
- Figure 5.3: FOC SIMULINK model (Faulty case)
- Figure 5.4: Forward Clarke transformation SIMULINK model
- Figure 5.5: Forward Park transformation SIMULINK model
- Figure 5.6: Rotor flux magnitude calculation
- Figure 5.7: Rotor flux position calculation
- Figure 5.8: SIMULINK model to calculate direct-current reference component I_d^*
- Figure 5.9: SIMULINK model to calculate direct-current reference component I_d^*
- Figure 5.10: SIMULINK model of speed controller
- Figure 5.11: SIMULINK model of PI controller
- Figure 5.12 SIMULINK model of Inverter and SPWM
- Figure 5.13: Machine's actual rotor speed while using both of the sync.-reference-frame PI and FOPI controllers
- Figure 5.14: Machine's actual rotor speed error while using both of the sync.-reference-frame PI and FOPI controllers
- Figure 5.15: Machine's phase currents (A, B and C) while using both of the sync.-reference-frame PI and FOPI controllers (before and after the fault instant)

- Figure 5.16: Machine's phase currents (D, E and F) while using both of the sync.-reference-frame PI and FOPI controllers (before and after the fault instant)
- Figure 5.17: Machine's phase currents (A, B and C) while using both of the sync.-reference-frame PI and FOPI controllers (before and after speed reduction)
- Figure 5.18: Machine's phase currents (D, E and F) while using both of the sync.-reference-frame PI and FOPI controllers (before and after speed reduction)
- Figure 5.19: Machine's phase currents (A, B and C) while using both of the sync.-reference-frame PI and FOPI controllers (before and after speed increment)
- Figure 5.20: Machine's phase currents (D, E and F) while using both of the sync.-reference-frame PI and FOPI controllers (before and after speed increment)
- Figure 5.21: Machine's actual torque while using both of the sync.reference-frame PI and FOPI controllers
- Figure 5.22: Machine's reference torque while using both of the sync.-reference-frame PI and FOPI controllers
- Figure 5.23: Machine's torque error while using both of the sync.reference-frame PI and FOPI controllers
- Figure 5.24: Machine's actual torque while using both of the sync.reference-frame PI and FOPI controllers (before and after fault instant)

- Figure 5.25: Machine's reference torque while using both of the sync.-reference-frame PI and FOPI controllers (before and after fault instant)
- Figure 5.26: Machine's torque error while using both of the sync.reference-frame PI and FOPI controllers (before and after fault instant)
- Figure 5.27: Machine's actual torque while using both of the sync.reference-frame PI and FOPI controllers (before and after speed reduction)
- Figure 5.28: Machine's reference torque while using both of the sync.-reference-frame PI and FOPI controllers (before and after speed reduction)
- Figure 5.30: Machine's actual torque while using both of the sync.reference-frame PI and FOPI controllers (before and after speed increment)
- Figure 5.31: Machine's reference torque while using both of the sync.-reference-frame PI and FOPI controllers (before and after speed increment)
- Figure 5.32: Machine's torque error while using both of the sync.reference-frame PI and FOPI controllers (before and after speed increment)
- Figure 5.33: Machine's actual rotor speed while using both of the sync.-reference-frame PI and FOPI controllers
- Figure 5.34: Machine's actual rotor speed error while using both of the sync.-reference-frame PI and FOPI controllers

- Figure 5.35: Machine's phase currents (A, B and C) while using both of the sync.-reference-frame PI and FOPI controllers (before and after load torque reduction)
- Figure 5.36: Machine's phase currents (D, E and F) while using both of the sync.-reference-frame PI and FOPI controllers (before and after load torque reduction)
- Figure 5.37: Machine's phase currents (A, B and C) while using both of the sync.-reference-frame PI and FOPI controllers (before and after load torque increment)
- Figure 5.38: Machine's phase currents (D, E and F) while using both of the sync.-reference-frame PI and FOPI controllers (before and after load torque increment)
- Figure 5.39: Machine's actual torque while using both of the sync.reference-frame PI and FOPI controllers
- Figure 5.40: Machine's reference torque while using both of the sync.-reference-frame PI and FOPI controllers
- Figure 5.41: Machine's torque error while using both of the sync.reference-frame PI and FOPI controllers
- Figure 5.42: Machine's actual torque while using both of the sync.reference-frame PI and FOPI controllers (before and after torque reduction)
- Figure 5.43: Machine's reference torque while using both of the sync.-reference-frame PI and FOPI controllers (before & after torque reduction)

- Figure 5.44: Machine's torque error while using both of the sync.reference-frame PI and FOPI controllers (before and after torque reduction)
- Figure 5.45: Machine's actual torque while using both of the sync.reference-frame PI and FOPI controllers (before and after torque increment)
- Figure 5.46: Machine's reference torque while using both of the sync.-reference-frame PI and FOPI controllers (before and after torque increment)
- Figure 5.47: Machine's torque error while using both of the sync.reference-frame PI and FOPI controllers (before and after torque increment)
- Figure 5.48: Machine's actual rotor speed while using both of the sync.-reference-frame PI and FOPI controllers
- Figure 5.49: Machine's rotor speed error while using both of the sync.-reference-frame PI and FOPI controllers
- Figure 5.50: Machine's phase currents (A, B and C) while using both of the sync.-reference-frame PI and FOPI controllers
- Figure 5.51: Machine's phase currents (D, E and F) while using both of the sync.-reference-frame PI and FOPI controllers
- Figure 5.52: Machine's actual torque while using both of the sync.reference-frame PI and FOPI controllers
- Figure 5.53: Machine's reference torque while using both of the sync.-reference-frame PI and FOPI controllers

- Figure 5.54: Machine's torque error while using both of the sync.reference-frame PI and FOPI controllers
- Figure 5.55: Machine's actual rotor speed while using both of the sync.-reference-frame PI and FOPI controllers
- Figure 5.56: Machine's rotor speed error while using both of the sync.-reference-frame PI and FOPI controllers
- Figure 5.57: Machine's phase currents (A, B and C) while using both of the sync.-reference-frame PI and FOPI controllers
- Figure 5.58: Machine's phase currents (D, E and F) while using both of the sync.-reference-frame PI and FOPI controllers
- Figure 5.59: Machine's actual torque while using both of the sync.reference-frame PI and FOPI controllers
- Figure 5.60: Machine's reference torque while using both of the sync.-reference-frame PI and FOPI controllers
- Figure 5.61: Machine's torque error while using both of the sync.reference-frame PI and FOPI controller