Comparative evaluation of the antimicrobial activity of some natural herbal extracts (an *in vitro* study)

A thesis submitted to the faculty of Dentistry, Ain Shams University for the partial fulfillment of requirements of the Master's degree in Endodontics

Presented by

Mohammed Alamean Mohammed Taher Ahmed

B.D.S (2009)

Ain Shams University

Faculty of Dentistry
Ain Shams University
2017

Supervisors

Dr. Shehab El-Din Mohamed Saber

Professor of Endodontics, Endodontic department, Faculty of Dentistry, Ain Shams University

Dr. Soha Abdulrahman El-Hady

Professor of Microbiology, Microbiology Department, Faculty of Medicine, Ain Shams University

Dr. Mohammed Mokhtar Nagy

Associate Professor of Endodontics, Endodontic Department, Faculty of Dentistry, Ain Shams University

Acknowledgment

First I want to thank Allah for supporting me and guiding me throughout my life.

I would like to express my deep gratitude and appreciation to **Dr. Shehab El-Din Mohamed Saber** Professor of Endodontics, Endodontic department, Faculty of Dentistry, Ain Shams University for his supervision, variable guidance and unlimited support during the entire course of this study.

I am also very grateful to **Dr. Soha Abdulrahman El-Hady** Professor of Microbiology, Microbiology Department, Faculty of Medicine, Ain Shams University for her support, assistance and patience during the laboratory work of the study.

I am indebted to **Dr. Mohammed Mokhtar Nagy** Associate Professor of Endodontics, Endodontic Department, Faculty of Dentistry, Ain Shams University for his supervision, support and unlimited help.

And finally I would like to thank all members of the Endodontic Department, Faculty of Dentistry, Ain Shams University for their help and support.

Dedication

To The Soul Of My Father.

To The Soul Of My Mother.

To My Beloved Sisters.

To My Soul Mate And My Beloved Wife.

To All My Friends And Colleagues.

CONTENTS

Title	Page
Introduction	1
Review of Literature	4
Aim of the study	59
Materials and Methods	60
Results	81
Discussion	96
Summary and Conclusion	108
References	111
Arabic Summary	

List of tables

Table	Title	Page
No.		No.
1	Equipment used in the study and their manufacturer	60
2	Materials used in the study and their manufacturer	61
3	Herbal and drugs used in the study and their manufacturer	62
4	Classification of specimen	75
5	Classification of specimens and given name for each group	82
6	Results of CFU of Experimental and control group and their mean and standard deviation	85
7	Mean and standard deviation values of bacterial count of the control and experimental groups.	86

List of figures

Fig.	Title	Page
No.		No.
1	Collected teeth inspection before preparation	63
2	ultrasonic scaler	64
3	inspection of canal anatomy and	65
	detremnation of working length with digital	
	X ray	
4	Protaper rotary nickel titanium system used	65
	to prepare root canals	
5	dried Neem leaves	67
6	Green tea powder	67
7	Nutmeg powder	67
8	Turmeric powder	68
9	Pure Tea tree oil	68
10	Herbal extracts saved in dark air-tight	69
	containers	
11	Calcium hydroxide paste	70
12	(a) sample after separation and fixation (b)	72
	sample after sputter coating	
13	Edwards S150A Sputter coater, USA	73
14	QUANTA FEG 250, FEI, Oregon, USA	73
15	injection of Intra canal medicament to	76
	specimen thru intra canal disposable tip	
16	specimens of each group are enveloped with	77
	aluminum foil and placed in special labeled	
	container for each group	
17	Incubator Quincy Lab Corporation,	77
	Chicago, IL, USA	

Fig.	Title	Page
No.		No.
18	test tubes of each group contain saline and	78
	paper point used to collect sample of each	
	specimen after 7 days of application of	
	medicaments	
19	BHI agar plate after incubation showed no growth	79
20	BHI agar plate showed formed colonies	80
21	BHI agar plate showed formed colonies	80
22	Column chart of mean values of bacterial	87
	count for control and experimental group	
23a	Photomicrograph showing mature <i>E. faecalis</i>	88
	colonies and accumulation of extracellular	
	polysaccharides	
23b	Photomicrograph showing mature E.	88
	Faecalis colonies and accumulation of	
	extracellular polysaccharides and complete	
245	infiltration of dentinal tubules	90
24a	Photomicrograph showing clear dentin	89
24b	Surface and patent dentinal tubules Photomicrograph showing clear patent	89
440	Photomicrograph showing clear patent dentinal tubules with clean surface insuring	09
	sterility of sample	
25a	Photomicrograph showing fewer number of	90
	biofilm colonies after application of neem	- 0
	and some dentinal tubules opened without	
	infiltration of biofilm	
25b	Photomicrograph showing fewer number of	90
	biofilm colonies after application of neem	

Fig.	Title	Page
No.		No.
26a	Photomicrograph showing decrease number	91
	of colonies and biofilm after application of	
	turmeric and some dentinal tubules opened	
	without infiltration of biofilm	
26b	Photomicrograph showing fewer number of	91
	biofilm colonies after application of turmeric	
27a	Photomicrograph showing dentinal surface	92
	covered with biofilm with extracellular	
	polysaccharides and large number of cocci of	
	different sizes after application of nutmeg	
27b	Photomicrograph showing dentinal surface	92
	covered with biofilm with extracellular	
	polysaccharides and the dentinal tubules is	
	infiltrated and obliterated by colonies of	
	cocci after application of nutmeg	
28a	Photomicrograph showing mature E.	93
	Faecalis colonies and accumulation of	
	extracellular polysaccharides and complete	
	infiltration of dentinal tubules after	
201	application of green tea	0.2
28b	Photomicrograph showing mature E. faecalis	93
	colonies and accumulation of extracellular	
	polysaccharides with complete infiltration of	
	dentinal tubules and range of cocci of	
20	different size after application of green tea	0.4
29a	Photomicrograph showing fewer number of	94
	biofilm colonies after application of tea tree	
	oil	

Fig.	Title	Page No.
29b	Photomicrograph showing decrease in number of colonies and in biofilm with presence of colonies infiltration within dentinal tubules after application of tea tree oil	94
30a	Photomicrograph showing scanty number of biofilm colonies after application of calcium hydroxide with clear dentinal surface	95
30b	Photomicrograph showing absence of biofilm colonies and cocci after application of calcium hydroxide with clean surface and open, patent and empty dentinal tubules which was evidence of great reduction in bacterial growth	95

Introduction

One of the important objectives of root canal treatment is elimination of the microorganisms from the root canal system. *Enterococcus faecalis* is normally found in the human intestine, but may temporarily be found in the oral cavity, where they have been associated with pathogenic oral manifestations such as mucosal lesions in immunocompromised patients, and as superinfecting organisms in periodontitis and, most importantly, in persistent root canal infections. Several studies have shown that enterococci resist various intracanal treatment procedures. This is attributed to their ability to penetrate dentinal tubules, withstand high pH values, and possession of virulence factors. The use of an intracanal medicament helps in the elimination of bacteria, thereby providing an environment conducive for periapical tissue repair.

Cumulative studies have shown that *E. faecalis* is resistant to commonly used intracanal medicaments and that's why research should be directed to explore other alternatives.

Azadirachta Indica commonly known as Neem is used as traditional medicine A. indica demonstrated several biological Activities. Neem leaf extract possess antiviral, antioxidant, antiulcer and antifungal activity. Neem leaves, seeds and bark

possesses a wide spectrum of antibacterial action against Gramnegative and Gram-positive microorganisms.

Curcuma Longa known as Turmeric has been used for thousands of years as a dye, a flavoring agent and a medicinal herb. Turmeric has antimicrobial, antioxidant, astringent and other useful properties.

Myristica frangans known as nutmeg is native to the Spice Islands, located in Moluccas, Indonesia. In traditional medicine, the seed kernel (nutmeg) is widely used as astringent, hypolipidaemic, antithrombotic, antiplatelet aggregation and antifungal. In dentistry application, the seed has strong anticariogenic activity, possesses antibacterial effect against oral microorganisms also exhibits good antibacterial properties against Gram-positive and Gram-negative bacteria.

Green tea is the traditional drink of Japan and China and is prepared from the young shoots of tea plant *Camellia Sinensis*. The leaves from the tea plant contain polyphenolic components with activity against a wide spectrum of microbes. Green tea polyphenols have demonstrated antioxidant, anti-inflammatory and antimicrobial properties in numerous studies.

Tea tree oil (*Melaleuca alternifolia*) as it is more commonly known has many properties such as being an antibacterial, an antifungal agent and a mild solvent.

Therefore conducting a study to evaluate the antimicrobial activity of some herbal extracts as endodontic intracanal medicaments was thought to be of value.

Review of literature

Apical periodontitis occurring after endodontic Treatment presents a more complex etiologic & therapeutic issue than primary apical periodontitis. It is believed that intra-radicular infection is an essential cause of primary as well as a major contributor of post treatment apical periodontitis. *Enterococcus faecalis* is the most commonly implicated microorganism in asymptomatic persistent infections^{1,2}.

E. faecalis is a normal inhabitant of the oral cavity. The prevalence of *E. faecalis* is increased in oral rinse samples from patients receiving initial endodontic treatment, that midway through treatment, and patients receiving endodontic retreatment when compared to those with no endodontic history. *E. faecalis* is associated with different types of periradicular disease including 1^{ry} endodontic infections and persistent infections. The highly complex nature of the organism poses a great challenge for clinician.

I. Morphologic characteristics of *E. faecalis* and its prevalence in endodontic infection

Enterococcus faecalis is Gram positive cocci that occur singly in pairs or in short chains. It is a facultative anaerobe present in small proportion of the flora of untreated canal as a part of polymicrobial flora. It is a predominant bacteria implicated in root canal failures & persistent infections. ^{3,4,5} In post treatment apical periodontitis the prevalence ranges from 24% to 77%. ^{6,7}

Enterococci survive very harsh environments including extreme alkaline pH (9.6) and salt concentrations. They resist bile salts, detergents, heavy metals, ethanol, azide, and desiccation. They can grow in the range of 10 to 45°C and survive a temperature of 60°C for 30 minutes.^{8,9}

Sundqvist et al ⁴ assessed type of microbial flora in teeth after failed endodontic therapy in vivo and established the results of conservative re-treatment. Samples of root-filled teeth with persisting periapical lesions were selected for re-treatment. After removal of the root filling, canals were sampled by means of advanced microbiologic techniques. The teeth then were retreated and followed for up to 5 years. They found that microbial flora was mainly single species of predominantly gram-positive organisms. The isolates most commonly recovered were bacteria of the species *Enterococcus faecalis*.