Seminal MicroRNA in infertile men with Varicocele

Thesis submitted for the fulfillment of

M.D. Degree in Andrology, Sexology & STIs

by

Mohamed Farag Azmy

MB, BCh, MSc

Supervisors

Dr. Taymour Mostafa Ibrahim

Professor of Andrology, Sexology & STIs
Faculty of Medicine, Cairo University

Dr. Laila Ahmed Rashed

Professor of Medical Biochemistry

Molecular Biology Unit

Faculty of Medicine, Cairo University

Dr. Nashaat Nabil Ismail

Lecturer of Andrology, Sexology & STIs Faculty of Medicine, Beni-Suef University

Faculty of Medicine
Cairo University
2015

Abstract

Objective: To assess seminal miRNA 122, 181a, 34c-5 in infertile men with varicocele. **Materials and Methods**: This study included 79 men that were consecutively recruited from the Andrology Department, Kasr El-Aini Hospital, after institutional review board (IRB) approval and informed consent. They were divided into; fertile men without Vx (n=19), fertile men with Vx (n=14), oligoasthenotertatozoospermic (OAT) men without Vx (n= 23) and OAT men with Vx (n= 23). They were subjected to history taking, clinical examination and semen analysis. In their seminal plasma, *BAX* and BCl₂, malondialdehyde (MDA) and glutathione peroxidase (GPx) were estimated in addition to seminal plasma miRNA 122,181a, 34c-5 by quantitative real time –PCR.

Results: Seminal miRNA 122, 181a, 34c-5 demonstrated significant positive correlation with sperm count, sperm motility, sperm normal forms, seminal GPx, seminal BCl₂, and with each other and significant negative correlation with seminal *BAX*, MDA.Seminal miRNAs 122, 181a, 34c-5 demonstrated nonsignificant correlation with Vx grade. There was a significant increase in seminal Bax and significant decrease in seminal Bcl₂ in infertile men compared with fertile men being exaggerated in infertile men with Vx. There was a significant increase in seminal MDA and significant decrease in seminal GPx in infertile men compared with fertile men being exaggerated in infertile men with Vx. There was a significant decrease in mean levels of seminal miRNAs in infertile men compared with fertile men being the least in infertile men with Vx.

Conclusion: Seminal miRNA 122, 181a, 34c-5 have significant positive correlation with sperm count, sperm motility, sperm normal forms, seminal GPx, seminal BCl₂, each other, significant negative correlation with seminal *BAX*, MDA and nonsignificant correlation with Vx grade.

Keywords: Male infertility; varicocele; miRNA; OAT; BAX; BCl₂

<u>Acknowledgement</u>

My gratitude to **Prof. Dr. Taymour Mostafa** Professor of Andrology, Sexology & STIs, Cairo University, for his support and endless advices and help, I wish one day to have his way of thinking and part of his perfectionism and knowledge.

I would like to thank **Prof. Dr. Laila Rashed**, Professor of Medical Biochemistry and Molecular Biology Unit- Faculty of Medicine, Cairo University for the facilities she gave to me to perform this work.

I am greatly thankful to Assistant Prof. Dr. Ihab Abdellatif Osman, assistant professor of Andrology & STIs, faculty of Medicine, Cairo University, for his valuable scientific advice and guidance.

I would like to thank Assistant Prof. Dr. Rashad Mahmoud Mostafa, assistant professor of Andrology & STIs, faculty of Medicine, Suez Canal University, for his kind help and advice.

I owe special gratitude to **Dr. Nashaat Nabil,** Lecturer of Andrology, Sexolog & STIs, Faculty of Medicine, Beni Suef University, for his patience, unfailing help, advice, strict supervision and revision of this work, his valuable comments and efforts.

Last but certainly not least, I owe to the patients included in this study, may God alleviate their sufferings and may all our efforts be just for their own benefit.

List of Contents

Content	Page
Introduction	1
Aim of the work	3
Review of Literature	
Varicocele	4
Micro RNA	27
Materials& Methods	37
Results	46
Discussion	87
Summary	97
References	99
Arabic Summary	

List of abbreviations

Ago Argonaute

AKT1 v-akt murine thymoma viral oncogene homolog 1

AKT2 v-akt murine thymoma viral oncogene homolog 2

ART Assisted reproductive techniques

ART Assisted Reproductive Technology

BAX BCl₂ associated X protein

BCL B cell lymphoma 2

cDNA Complementary deoxyribo nucleic acid

CDUS Colour Doppler scrotal ultrasonography

Cyt C Cytochrome C

DFI DNA fragmentation index

DNA Deoxyribo nucleic acid

ECL Enhanced chemiluminescence

ERβ Estrogen receptor β

FAM Fluorescent dye

FoxO Fork head box O

FSH Follicular stimulating hormone

GnRH Gonadotrophin releasing hormone

GPx Glutathione peroxidase

GR Glutathione reductase

GSH Reduced glutathione

GSSG Glutathione disulfide

HCG Human chorionic gonadotropin

HRP Horseradish peroxidase

HSPA1B Heat shock 70kDa protein 1B

ICSI Intracytoplasmic sperm injection

IRB Institutional review board

IRF1 Interferon regulatory factor-1

IVF In-vitro fertilization

JC-1 Fluorescent carbocyanine dye

MDA Malondialdehyde

MEST Mesoderm-specific transcript homolog protein

MGB A minor groove binder

MHZ Mega Hertz

miRNA Micro ribonucleic acid

MMP Mitochondrial membrane potential

mRNA Messenger ribonucleic acid

NADPH Nicotinamide adenine dinucleotide phosphate

NF-kB Nuclear factor kappa-light-chain enhancer of B cells

NFQ A non-fluorescent quencher

NO Nitric oxide

NOA Nonobstructive azoospermia

NOTCH1 Notch gene homologue 1

OA Oligoasthenozoospermia

OAT Oligoasthenotertatozoospermia

PLAG1 Pleomorphic adenoma gene 1

PTEN Phosphatase and tensin homolog

RISC RNA-induced silencing complex

RNA Ribonucleic acid

ROS Reactive oxygen species

RT-PCR Reverse transcriptase – polymerase chain reaction

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis

Sirt 1 Sirtuin 1

SOD Superoxide dismutase

SREBP Sterol regulatory element binding protein

TAC Total antioxidant capacity

TaqMan Taq polymerase plus pacMan

TBHP Tertiary-butyl hydroperoxide

TBST Tris-buffered saline/Triton X-100

TC⁹⁹ Technetium99

TGCTs Tesicular germ cell tumors

TGF- Beta 1 Transforming growth factor B

TNF- α Tumor necrosis factor- α

Tnp2 Transition protein 2

Vx Varicocele

WHO World health organization

List of Tables

<u>No.</u>	<u>Title</u>	Page
Table (1)	Data of healthy fertile men (n=19)	47
Table (2)	Data of fertile men with Vx (n=14)	48
Table (3)	Data of OAT men without Vx (n= 23)	49
Table (4)	Data of OAT men with Vx (n= 23)	50
Table (5)	Comparison of investigated groups (mean ± SD)	51
Table (6)	Correlation of the investigated parameters.	56

List of Figures

	Title	Page
Figure (1)	Mean levels of seminal miRNA-122	52
Figure (2)	Mean levels of seminal miRNA-181-a	52
Figure (3)	Mean levels of seminal miRNA-34c-5	53
Figure (4)	Mean levels of seminal BAX in different groups	53
Figure (5)	Mean levels of seminal BCL2 (nmol/ml)	54
Figure (6)	Mean levels of seminal GPx (U/ml)	54
Figure (7)	Mean levels of seminal MDA (nmol/ml)	55
Figure (8)	Nonsignificant correlation of seminal miRNA-122 with	57
	age	51
Figure (9)	Significant positive correlation of seminal miRNA-122	58
	with sperm count	50
Figure (10)	Significant positive correlation of seminal miRNA-122	59
	with sperm motility	
Figure (11)	Significant positive correlation of seminal miRNA-122	60
	with sperm normal forms	00
Figure (12)	Significant negative correlation of seminal miRNA-	61
	122 with seminal <i>BAX</i>	UI
Figure (13)	Significant positive correlation of seminal miRNA-122	
	with seminal BCl ₂	62
Figure (14)	Significant positive correlation of seminal miRNA-122	
	with seminal GPx	63
Figure (15)	Significant negative correlation of seminal miRNA-	
	122 with seminal MDA	64

	Title	Page
Figure (16)	Significant positive correlation of seminal miRNA-122	65
	with seminal miRNA-181-a	03
Figure (17)	Significant positive correlation of seminal miRNA-122	66
	with seminal miRNA-34c-5	00
Figure (18)	Nonsignificant positive correlation of seminal miRNA-	67
	181-a with age	07
Figure (19)	Significant positive correlation of seminal miRNA-	68
	181-a with sperm count	Uo
Figure (20)	Significant positive correlation of seminal miRNA-	69
	181-a with sperm motility	09
Figure (21)	Significant positive correlation of seminal miRNA-	70
	181-a with sperm normal forms	/0
Figure (22)	Significant negative correlation of seminal miRNA-	71
	181-a with seminal <i>BAX</i>	/1
Figure (23)	Significant positive correlation of seminal miRNA-	72
	181-a with seminal BCl ₂	12
Figure (24)	Significant positive correlation of seminal miRNA-	73
	181-a with seminal GPx	13
Figure (25)	Significant negative correlation of seminal miRNA-	74
	181-a with seminal MDA	/4
Figure (26)	Significant positive correlation of seminal miRNA-	75
	181-a with seminal miRNA-34c-5	13
Figure (27)	Nonsignificant positive correlation of seminal miRNA-	76
	34c-5 with age	/0
Figure (28)	Significant positive correlation of seminal miRNA -	
	34c-5 with sperm count	77
	·	

	Title	Page
Figure (29)	Significant positive correlation of seminal miRNA-	78
	34c-5 with sperm motility	76
Figure (30)	Significant positive correlation of seminal miRNA-	79
	34c-5 with sperm normal forms	19
Figure (31)	Significant negative correlation of seminal miRNA-	80
	34c-5 with seminal <i>BAX</i>	00
Figure (32)	Significant positive correlation of seminal miRNA-	81
	34c-5 with seminal BCl ₂	01
Figure (33)	Significant positive correlation of seminal miRNA-	82
	34c-5 with seminal GPx	02
Figure (34)	Significant negative correlation of seminal miRNA-	83
	34c-5 with seminal MDA	0.5
Figure (35)	Nonsignificant correlation of seminal miRNA-122 and	84
	Vx grade	04
Figure (36)	Nonsignificant correlation of seminal miRNA-181-a	85
	and Vx grade	85
Figure (37)	Nonsignificant correlation of seminal miRNA-34c-5	86
	and Vx grade	OU

Introduction

Varicocele (Vx) is defined as a vascular abnormality in the veins within the pampiniform plexus (Cil et al., 2015). Vx and its impact on male infertility is still a subject of debate. Approximately 15% of adult men are believed to have clinical or subclinical Vx, although the prevalence in infertile men is as high as 40% (Shafi et al., 2014).

Vx can be categorized as; grade I, enlargement of the venous plexus of spermatic cord evident only by Valsalva maneuver; grade II, enlargement of the venous plexus of spermatic cord by palpation at upright position; and grade III, visual enlargement of the venous plexus of spermatic cord. Non-palpable enlargement of the venous plexus of the spermatic cord diagnosed by ultrasound is defined as subclinical Vx (Mostafa et al., 2012; Mostafa et al., 2015).

Several theories explained the mechanisms by which Vx impairs male fertility including; scrotal hyperthermia, retrograde flow of metabolites, Leydig cell dysfunction, hypoxia due to venous stasis or impaired testicular artery perfusion and disrupted blood-testis barrier (Mostafa et al., 2009). Mostafa et al. (2001; 2009) added that Vx has an oxidative stress effect on semen even in fertile normozoospermic men.

MicroRNAs (miRNA) are a family of small non-coding RNAs of about 22 nucleotides that play important roles in regulating post-transcriptional gene silencing via base pair binding to the untranslated region of their target mRNAs (**Stark et al., 2008**). Several miRNAs have been implicated in the regulation of B-cell differentiation and T-cell receptor signaling (**Chen et al., 2004**). Others are associated with inflammation and innate immune responses, in which it regulates the response to many microbial components and pro-inflammatory cytokines. In addition, modulation of miRNAs is related to apoptosis processes (**Taganov et al., 2006**).

MiRNAs were first detected in human spermatozoa by **Ostermeier et al.** (2002). MiRNAs may also play important roles in mammalian spermatogenesis where a number of miRNAs are produced abundantly in male germ cells throughout spermatogenesis (**He et al., 2009**). However, the molecular features of miRNA in spermatogenesis and male fertility are not well defined (**Abhari et al., 2014**). Lately, miRNAs have great potential for forensic body fluid identification because they are expressed in a tissue specific manner and are less prone to degradation (**Park et al., 2014**).

Aim of the Work

To assess seminal plasma microRNA 122, microRNA 181a and microRNA 34c-5P in infertile men with varicocele (Vx).

Varicocele and Male Infertility

Varicocele (Vx) is a major cause of male infertility, as it may impair spermatogenesis through several distinct physiopathological mechanisms. With the late advances in biomolecular techniques and the development of novel sperm functional tests, it has been possible to better understand the mechanisms involved in testicular damage provoked by Vx and, therefore, propose optimized ways to prevent and/or reverse them.

Approximately 8% of men in reproductive age seek medical assistance for fertility-related problems. Among them, 1%–10% carry a condition that compromise their fertility potential whereas Vx alone accounts for 35% of these cases. While Vx has an incidence of 4.4%–22.6% in the general population, 21%–41% of men with primary infertility and 75%–81% of men with secondary infertility have this condition (**Sadek et al., 2011**; **Mostafa et al., 2012**).

Epidemiology

Vxs is identified in 7% and 10%–25% of pre-pubertal and post-pubertal men, respectively (**Akaby et al., 2000**). The higher frequency in elderly males and in men with secondary infertility suggested that it is a progressive disorder (**Canals et al., 2005**). Anecdotal experience