Evaluation of Color Reproduction of CAD –Veneered Zirconia Restorations with Different Core-Veneer Thickness Ratios and Different Veneer Translucencies

Thesis

Submitted for Partial Fulfillment of the Requirements of the Master Degree in Crown and Bridge

Faculty of Dentistry, Ain Shams University

By

Mennatallah Mohie el-Din Wahba Aly el-Din

BD.Sc (Ain Shams University 2007)

Teacher Assistant in Crown and Bridge Department

Faculty of Dentistry, Future University

Faculty of Dentistry

Ain Shams University

2012

Supervisors

Dr. Tarek Salah El-Din Morsi

Assistant professor of Fixed Prosthodontics

Crown and Bridge Department

Faculty of Dentistry, Ain Shams University

Dr.Amr Saleh El-Etreby

Lecturer of Fixed Prosthodontics

Crown and Bridge Department

Faculty of Dentistry, Ain Shams University

تقييم قدرة القشره المصنعه بواسطة الحاسوب المغطيه للتركيبات الزركونيه بنسب سمك مختلفه بين القشره و اللب و نسب شفافيه مختلفه على استنساخ اللون

توطئة للحصول على درجة الماجستير في التيجان و الجسور كلية طب الاسنان جامعة عين شمس

مقدمة من

الطبيبه

منة الله محيى الدين وهبه على الدين

بكالوريوس طب الاسنان جامعة عين شمس (٢٠٠٧) معيدة بكلية طب الفم و الاسنان جامعة المستقبل

كلية طب الاسنان جامعة عين شمس

Summary and Conclusions:

One of the most difficult challenges in esthetic dentistry is obtaining an exact color match between natural teeth and an artificial restoration making the visual recognition of the inserted restoration a difficult task even for well-trained eyes. The achievement of an allceramic esthetic restoration that matches perfectly with adjacent teeth is the result of the interplay between two important optical factors: on one hand, the masking capacity of ceramics to block the background color with sufficient material thickness, and on the other hand, the amount of translucency the ceramic that will allow the natural background color shine throughout a translucent material and exhibit the most natural appearance. However, the final color result is unpredictable when the restoration is composed of different layers with unspecified thicknesses, which is the case for core veneered all-ceramic restorations. Recent developments in ceramic technology and evolutionary treatment methods have all increased the predictability of all-ceramic restorations. The introduction of partially stabilized zirconium dioxide to the dental field opened new design and application limits of all-ceramic restorations allowing a minimum framework thickness of 0.5 mm with the remaining thickness of the restoration used for building the ceramic veneer.

The following study was conducted to test the color reproduction ability of zirconia restorations veneered with CAD-on

بسو الله الرحمن الرحيو

{يرفع الله الَّذين آمنوا منكم والَّذين أوتوا العلم درجات}

حدق الله العظيم

سورة المجادلة (آية ١١)

Acknowledgment

First and foremost-without any question or hesitation-I would love to express my deepest gratitude and sincere appreciation to my supervisor and mentor, ever since I graduated, Dr. Tarek Salah el-Din Morsi, Assistant professor of Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University for his priceless effort, meticulous care, unsurpassed support and patience throughout the course of this research. Without his encouragement and invaluable contributions, this research would have never been possible. He has always guided me through the way providing all the help and care and kept me on course the entire way. I've always benefited from his advice and knowledge both professionally and personally. For him, I will remain eternally indebted.

A very special thanks goes to *Dr. Amr el-Etreby*, Lecturer of Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University for his guidance, assistance and encouragement throughout this work. He has always been very helpful and generous with his time and effort. I wish to thank *Mr. Magdy* at Photoenergy centre, Ain Shams University for his time and effort helping me with the spectrophotometric measurements.

Thanks are also due to Dr. *Mohamed Shady* for providing the statistical analysis for the entire project and being highly patient in explaining and clarifying it all to me.

My deepest love and appreciation goes to my dad, mom and brother for their great help, support and patience.

Finally, I'd like to thank all my friends, colleagues and all the FUE family for always being their providing advice and help whenever needed.

Dedication

To my dad.... The source of my strength and support ever since the very beginning and all through the way of life. You've always been my role model and will always be.

To my mom.... The spring of love and care. She's God's gift on earth.

To my Brother..... My first friend and everlasting source of support.

To my dearest friends..... You've always been the reason for my growth and progress.

"My deepest love to all of you, without having you all in my life I'd have never been here now. Wish to make you all proud of me."

Contents

List of Tables	i
List of Figures	iv
Introduction	1
Review of Literature	4
Aim of Study and Statement of Problem	45
Materials and Methods	46
Results	76
Discussion	.128
Summary and Conclusions	.142
References	.146
Arabic Summary	

List of Tables:

Table1: Standard composition of InCoris ZI
Table 2: Standard composition of IPS e.max CAD
Table 3: Sample Grouping50
Table 4: Firing program for restoration fusion and crystallization
Table 5: Mean (SD) L* values for different core/veneer thickness ratios and
different veneer translucencies77
Table 6: Mean (SD) a* values for different core/veenr thickness ratios and
different veneer translucencies79
Table 7: Mean (SD) b* values for different core/veneer thickness ratios and
different veneer translucencies80
Table 8: Multivariate test results based on repeated measures ANOVA showing
the effect of core/veneer thickness ratio, veneer translucency and interaction
between them over L*,a* and b* values81
Table 9: Pairwise comparison showing the effect of core/veneer thickness ratio
over L*, a* and b* values82
Table 10: Pairwise comparison showing the effect of veneer translucency over
L*, a* and b* values84
Table 11: Pairwise comparison showing the effect of interaction between
core/veneer thickness ratio and veneer translucency over L*, a* and b* values.
87
Table 12: Mean (SD) Δ L*, Δ a* and Δ b* values for different core/veneer
thickness ratios between different veneer translucencies90
Table 13: 1-way ANOVA test for the effect of core/veneer thickness ratio over
Δ L*, Δ a* and Δ b* between different veneer translucencies92
Table 14: Mean (SD) Δ L*, Δ a* and Δ b* for different veneer translucencies
between different core/veneer thickness ratios
Table 15: Multivariate test results based on repeated measures ANOVA
showing the effect of core/veneer thickness ratio, veneer translucency and
interaction between them over Δ L*, Δa^* and Δb^* 96
Table 16: Pairwise comparison showing the effect of different core/veneer
thickness ratios over Δ L*, Δ a* and Δ b*
Table 17: Pairwise comparison showing the effect of different veneer
translucency over Δ L* Δ a* and Δ h*

Table 18: Pairwise comparison showing the effect of interaction between
veneer translucency and core/veneer thickness ratio at group A vs. group B
over ΔL^* , Δa^* and Δb^*
Table 19: Pairwise comparison showing the effect of interaction between
veneer translucency and core/veneer thickness ratio group B vs. group C 104
Table 20: Pairwise comparison showing the effect of interaction between
veneer translucency and core/veneer thickness ratio at group C vs. group A.
Table 21: Mean (SD) Δ E between different veneer translucencies in different
core/veneer thickness ratio108
Table 22: 1-way ANOVA showing the effect of different core/veneer thickness
ratios over delta E
Table 23 Mean (SD) Δ E between different core/veneer thickness ratios in
different veneer translucencies
Table 24: 2-way ANOVA showing the effect of core/veneer thickness ratio,
veneer translucency and interaction between them over $\Delta E.$
Table 25: Mean (SD) Δ E for different veneer translucencies
Table 26: Pairwise comparison showing the effect of core/veneer thickness
ratio over ΔE
Table 27: Mean (SD) Δ E for the effect of interaction between core/veneer
thickness ratio and veneer translucency
Table 28: Mean (SD) contrast ratios of different core/veneer thickness ratios
and different veneer translucencies116
Table 29:2-way ANOVA test showing the effect of core/veneer thickness ratio,
veneer translucency and interaction between them over contrast ratio 118
Table 30: Mean (SD) contrast ratios of different veneer translucencies 119
Table 31: Mean (SD) contrast ratios of different core/veneer thickness ratios.
Table 32: Mean (SD) contrast ratio values for the interaction between
core/veneer thickness ratio and veneer translucency
Table 33: Mean (SD) absolute translucency values for different core/veneer
thickness ratios and different veneer translucencies
Table 34: 2-way ANOVA test for the effect of core/veneer thickness ratio,
veneer translucency and interaction between them over absolute translucency

Table 35: Pairwise comparison showing the effect of different core/veneer	
thickness ratios on absolute translucency	. 124
Table 36: Pairwise comparison showing the effect of different veneer	
translucencies over absolute translucency	. 125
Table 37: Pairwise comparison showing the effect of interaction between	
different core/veneer thickness ratios and different veneer translucencies of	over
absolute translucency	. 126

List of Figures:

Figure 1: InCoris ZI	46
Figure 2: IPS e.ma x CAD HT	47
Figure 3: IPS e.max CAD LT	47
Figure 4: IPS emax Crystall/Connect	49
Figure 5: Stainless steel, white and black dies	51
Figure 6: Diagrammatic drawing for the master die	51
Figure 7: Cerec Optispray Powder	53
Figure 8: Optical impression of the preparation	55
Figure 9: Trimming the preparation	56
Figure 10: Entering the preparation margins	57
Figure 11: Proposed restoration design	58
Figure 12: Milling preview	58
Figure 13: Dialogue box for material selection	59
Figure 14: Milled zirconia copings	60
Figure 15: Sintered zirconia copings	61
Figure 16: Optical impression with 3-D infra-red camera	62
Figure 17: Trimming	63
Figure 18: Editing preparation margins	63
Figure 19: Dialogue box showing restoration parameters	64
Figure 20: proposed design of veneering cap	64
Figure 21: Milling preview	65
Figure 22: Dialogue box for material selection	65
Figure 23: Milled IPS e.max CAD veneers over their corresponding copings	66
Figure 24: IPS e.max crystall/Connect capsule over the Ivomix	67
Figure 25: Vibration of the CAD-on restoration using Ivomix	68
Figure 26: Vita EasyShade Compact	70
Figure 27: Unicam Spectrophotometer Helios	72
Figure 28: Unicam Spectrophotometer Helios, red arrow showing the light	
source, yellow arrow showing filter and blue arrow showing the light detect	tor
	72
Figure 29: Digramatic drawing for Unicam Helios Spectrophotometer	73
Figure 30: Plastic holder for holding the restoration during specrophotome	tric
measurement	74

Figure 31: Sample placed in holder inside the Unicam Spectrophotometer
Helios
Figure 32: Line chart showing estimated marginal means of L* in relation to
core/veneer thickness ratio in different veneer translucencies78
Figure 33: Line chart showing estimated marginal means of a* in relation to
core/veneer thickness ratio in different venere translucencies79
Figure 34: Line chart showing estimated marginal means of b* in relation to
core/veneer thickness ratio in different veneer translucencies80
Figure 35: Bar chart showing L*value in relation to core/veneer thickness ratio.
82
Figure 36: Bar chart showing a* value in relation to core/veneer thickness
ratio83
Figure 37: Bar chart showing b* value in relation to core/veneer thickness
ratio83
Figure 38: Bar chart showing L^* value in relation to veneer translucency 85
Figure 39: Bar chart showing a* value in relation to veneer translucency 85
Figure 40: Bar chart showing b^{\ast} value in relation to veneer translucency 86
Figure 41: Bar chart showing interaction between core/veneer thickness ratio
and veneer translucency over L*value
Figure 42: Bar chart showing interaction between core/veneer thickness ratio
and veneer translucency over a* value88
Figure 43: Bar chart showing interaction between core/veneer thickness ratio
and veneer translucency over b*value89
Figure 44: Bar chart showing Δ L* between different veneer translucencies in
relation to core/veneer thickness ratio90
Figure 45: Bar chart showing Δ a* between different veneer translucencies in
relation to core/veneer thickness ratio91
Figure 46: Bar chart showing Δb^* between different veneer translucencies in
relation to core/veneer thickness ratio
Figure 47: Line chart showing estimated marginal means of Δ L* between
different core/veneer thickness ratios in different veneer translucencies 94
Figure 48: Line chart showing estimated marginal means of Δ a* between
different core/veneer thickness ratios in different veneer translucencies 95
Figure 49: Line chart showing estimated marginal means of Δ b* between
different core/veneer thickness ratios in different veneer translucencies 95

Figure 50: Bar chart showing Δ L* between different core/veneer thickness
ratios
Figure 51: Bar chart showing ∆a* between different core/veneer thickness
ratios
Figure 52: Bar chart showing Δb^* between different core/veneer thickness
ratios
Figure 53: Bar chart showing ΔL^{*} between different veneer translucencies 100
Figure 54: Bar chart showing Δa^{*} between veneer translucencies100
Figure 55: Bar chart showing $\Delta b^{\boldsymbol{*}}$ between different veneer translucencies. 101
Figure 56: Bar chart showing ΔL^* in group A vs. group B in different veneer
translucencies
Figure 57: Bar chart showing Δa^* in group A vs. group B in different veneer
translucencies
Figure 58: Bar chart showing Δb^* in group A vs. group B in different veneer
translucencies
Figure 59: Bar chart showing ΔL^* in group B vs. group C in different veneer
translucencies
Figure 60: Bar chart showing Δb^* in group B vs. group C in different veneer
translucencies
Figure 61: Bar chart showing Δb^* in group B vs. group C in different veneer
translucencies
Figure 62: Bar chart showing ΔL^* in group C vs. group A in different veneer
translucencies
Figure 63: Bar chart showing Δa^* in group C vs. group A in different veneer
translucencies
Figure 64: Bar chart showing Δb^* in group C vs. group A in different veneer
translucencies
Figure 65: Bar chart showing ΔE between different veneer translucencies in
different core/veneer thickness ratios
Figure 66: Bar chart showing ΔE between different core/veneer thickness
ratios in different veneer translucencies
Figure 67: Line chart showing estimated marginal means of ΔE between
different core/veneer thickness ratios in different veneer translucencies 111
Figure 68: Bar chart showing ΔE in different veneer translucencies