DEVELOPMENT OF A CLINICAL PREDICTION INSTRUMENT FOR GROUP (A) BETA HEMOLYTIC STREPTOCOCCAL PHARYNGITIS IN CHILDREN

Thesis Submitted For Partial fulfillment of MSC In Pediatrics

By

Pakinam Abdel Aty Abdel Tawab. (M.B., B.Ch.)

Supervised by

Professor Dr. Hala Salah El- Din Hamza

Professor of Pediatrics Cairo University

Dr. Naglaa Abd El Rahman Mosaad

Assistant Professor of Pediatrics Cairo University

Dr. Soha Mohamed Emam

Assistant Professor of Pediatrics Cairo University

Faculty of medicine

Cairo University

2008

بسم الله الرحمن الرحبم

" و علمك ما لم تكن تعلم و كان فضل الله عليك عظيما"

صدق الله العظيم

النساء (۱۱۳)

Abstract

The study included 1626 children, 26.4%(N:430) of the children had a positive throat culture for group A B-hemolytic streptococci , 42.3% were girls, 45.5% were above 5 years of age. The highest rate of positive cultures was in children above 5 years of age (51.7%,p-value =0.002). Each presenting sign and symptom was evaluated in terms of its frequency and association with GABHS pharyngitis. The sensitivity, specificity, PPV, NPV, LR+ve, and LR-ve were calculated for each sign and symptom that was positively associated with GABHS Pharyngitis. Multiple logistic regression analysis was used to develop our final clinical prediction model.

Key Words:

Rheumatic heart disease - Epstein-Barr virus - Herpes simplex virus .

Acknowledgement

First of all thanks for GOD for helping me throughout my life.

I am deeply indebted, and I wish to express my sincere gratitude and respect to Professor Dr. Hala Salah El- Din Hamza Professor of Pediatrics Faculty of medicine, Cairo University, for her enthusiastic encouragement throughout the study, step by step advice, ceaseless effort, and honesty.

I owe special thanks to Dr. Naglaa Abd El Rahman Mosaad Assistant Professor of Pediatrics Faculty of medicine, Cairo University, for her great help, support, thorough and meticulous revising of the work and creative ideas.

My deepest thanks and sincere gratitude to Dr. Soha Mohamed Mohamed Emam Assistant Professor of Pediatrics Faculty of medicine, Cairo University, for her generosity, kindness and great support.

My deep thanks to my patients and their families for allowing me to include them in this study.

Finally, I am so grateful, and I am deeply indebted to my family for their loving, kindness and encouragement throughout this work which I dedicate to them

Contents

	Pages
List of tables	I
List of figures	III
List of abbreviations	VI
Introduction	1
Aim of work	4
Review of literature	5
Patients and methods	57
Results	81
Discussion	100
Conclusion	111
Summary	112
References	115
Arabic summary	125

List of tables

(Table1) Current recommended treatment regimens for GABHS Pharyngitis	36
(Table2) The age and sex distribution of the children participating in our study	82
(Table3) Association between age above 5, female sex, and GABHS pharyngitis	83
(Table4) Relative association between Rapid antigen test and throat culture	84
(Table5) Clinical presentation of Pharyngitis (Symptoms)	85
(Table6) Clinical presentation of Pharyngitis (Signs)	88
(Table7) Comparison between –ve and +ve culture in all continous variables using independent t test	90
(Table8) The performance of individual predictors for a positive diagnosis of GABHS Pharyngitis	92

Pages

(Table 9)	
Clinical Prediction Model Egypt	94
(Table10) Scoring of the clinical prediction model	94
(Table 11) Predictive Value of Clinical Prediction (Rule of varying treatment cut off score)	95
(Table12) WHO and ABU REESH Rules compared to Our rule	97
(Table 13) Summary of some clinical prediction rules	103

List of figures

	Pages
(Figure 1) A gram stained smear from pus showing Streptococci in chains among pus cells.	25
(Figure 2) Electron micrographs demonstrating the attachment and internalization of streptococci by human cultured pharyngeal cells.	26
(Figure 3) Diagram of the group A streptococcal cell	26
(Figure 4) Streptococcal Pharyngitis (Strep Throat).	31
(Figure 5) Necrotizing Fasciitis Due to Group A Streptococcus	48
(Figure 6) Diagram showing the steps of Rapid antigen test (STREP A OIA MAX TEST)	66
(Figure 7) The AGE of the children participating in our study	82
(Figure 8) The SEX of the children participating in our study	82
(Figure 9) Association between age above 5, female sex and GABHS pharyngitis	83

(Figure 10)	
Association between fever, chills, no runny nose, nasal congestion, painful swallowing, no cough	86
and GABHS Pharyngitis	
(Figure 11) Association between ear ache, vomiting and GABHS pharyngitis	86
(Figure 12) Association between abdominal pain, activity level below normal, disturbed sleep, hoarseness and GABHS Pharyngitis	87
(Figure 13): Association between no cough, pharyngeal erythema, tonsillar erythema, erythema posterior, faucial erythema and GABHS Pharyngitis	87
(Figure 14):	
Association between stages 1-4 tonsillar enlargement, tonsillar exudate and GABHS pharyngitis	89
(Figure 15): Association between lymph node tenderness, nares excoriations, pharyngeal exudate, lymph node enlargement and GABHS pharyngitis	89
(Figure 16): Association between fever, chills, runny nose, sore throat, vomiting, abdominal pain, activity level below normal durations and GABHS pharyngitis	91
(Figure 17) ROC curve of our whole model	96

(Figure 18) ROC curve of score 2 of our rule model	97
(Figure 19) ROC curve of WHO model	98
(Figure 20) ROC Curve of ABO REESH model	99
(Figure 21) Effectiveness of 7 clinical prediction rules applied in Cairo population	100

List of abbreviations

GABHS Group (A) beta hemolytic streptococcus

GAS Group (A) streptococcus

RF Rheumatic fever

RHD Rheumatic heart disease

CN Cranial nerve

EBV Epstein-Barr virus

CMV Cytomegalovirus

HSV Herpes simplex virus

HIV Human immunodeficiency virus

RPR Rapid plasma reagin

ASO Anti-streptolysin O

ADB test Anti –DNAse tests

OIA Optical Immunoassay

PANDAS Pediatric Autoimmune Neuropsychiatric Disorder

Associated with Group A Streptococci

CUSPH Cairo University Specialized Pediatric Hospital

MLR Multiple logistic regression

ROC Receiver Operating Characteristic curves

AUC Area under the curve

SPSS Statistical Package for Social Science

PPV Positive predictive value

NRV Negative predictive value

LK+ve Likelihood ratio positive

LK-ve Likelihood ratio negative

OR Odds ratio

WHO World Health Organization

Introduction

Pharyngitis due to group (A) beta hemolytic streptococcus (GABHS) assumes a special significance because of the risk of subsequent rheumatic fever (RF) and chronic rheumatic heart disease (RHD) in the infected child. Pharyngitis or sore throat is a common ailment the world over, and is especially common in children. About 10%-30% of acute pharyngitis is caused by (GABHS); (Pichichero ME,1995) ¹ viral infection accounts for the majority of the others. About 0.3-3% of patients of untreated (GABHS) pharyngitis go on to develop (RF) (WHO/ISFC meeting, 1995). ² Carditis occurs in about 70% of children with (RF) and about a fourth of these go on to develop chronic (RHD).

In wealthy countries, (RF) and (RHD) have been largely controlled since the 1950s. (Pichichero ME,1995) ¹ This dramatic decline is attributed partly to antibiotic treatment of streptococcal pharyngitis and partly to improvement in living standards. In developing countries, these same problems exist and are compound by other issues. The prevalence of (GABHS) pharyngitis in these countries is largely unknown due to paucity of studies. Secondly, facilities for performing throat cultures and agglutination tests as well as determining antibody titers are not generally available. Lastly, because of lack of awareness, many patients don't seek medical care(WHO/ISFC meeting, 1995).²

The pathogenesis of (RF) is still not fully understood but is known to be related to group A beta hemolytic streptococcal infection of the upper respiratory tract and a specific susceptibility of the individual host. Thus the most efficient strategy for the primary prevention of (RF),

besides improvement in living standards, lies in the antibiotic management of streptococcal pharyngitis.

Diagnosis of (GABHS) pharyngitis is traditionally made by throat culture in wealthy countries, however not all patients positive for throat culture represent true infection. More than 50% of such patients may be carriers (Wannamaker LW,1972).³ Demonstration of rise in antibody titers to (GABHS) in paired sera is only a mean of retrospective diagnosis. Recently, rapid streptococcal agglutination tests have become available and are highly specific, though they lack sensitivity.(McIssac WJ et al ,1997)⁴

Penicillin has been used to treat pharyngitis since 1952. Despite the availability of many alternative antibiotics, it is still the form of therapy recommended by the American Heart Association, the American Academy of Pediatrics, the World Health Organization (WHO) (Gerber MA et al, 1999) (WHO program for the prevention of rheumatic fever/rheumatic heart disease, 1992)^{5,6} Penicillin has a narrow spectrum of antimicrobial activity, proven efficacy and safety, and is the least expensive form of treatment. Penicillin may be administered intramusculary or orally (Bass JW,1986).⁷ For Penicillin allergic patients, erythromycin is recommended. Recent studies have shown oral cephalosporins, to be effective in the treatment of (GABHS) pharyngitis. These drugs are not practical for use in developing countries because they are very expensive and are not widely available in these countries. Additionally, use of these broad spectrum antibiotics can lead to increased antimicrobial resistance of other bacteria.

Improved care for streptococcal pharyngitis in children in less developed regions will have two major impacts 1) It will reduce the large burden of preventable cardiac disease in these regions, and 2) has the potential to reduce indiscriminate antibiotic use which is increasing the frequency of antimicrobial-resistant bacteria.

Since it is not desirable to treat all pharyngitis with antibiotics and laboratory facilities for culture and serology are not generally available, it would be useful to have guidelines for clinical identification of (GABHS) pharyngitis in less wealthy regions. Although there are a fairly large number of studies on (GABHS) pharyngitis in the literature, there are only a few which deal with clinical prediction rules for (GABHS) pharyngitis in children .There are some studies in adults describing clinical prediction rules for (GABHS) pharyngitis (Walsh et al, 1975) (Centor et al, 1981) (Komaroff et al, 1986). 8,9,10 Decision analyses for the illness in adults suggests that clinical prediction instruments are accurate enough to predict over the threshold treatment probability (Dippel DW et al, 1992) (Tompkins RK et al, 1997) 11,12 In children, there are few studies of this type.

Aim of work

This study aims to improve clinical diagnosis of group (A) beta hemolytic streptococcal (GABHS) pharyngitis and to develop clinical criteria for the presumptive diagnosis of streptococcal pharyngitis. The guideline will allow clinicians to provide antibiotic therapy only for those children with a high probability of streptococcal pharyngitis, and will therefore reduce antibiotic use in the majority of pharyngitis cases which are not streptococcal. Improved clinical care of children in less developed regions and the reduction of indiscriminate antibiotic use will improve health states of children, aiding economic development.

Primary objective:

To identify the optimal set of clinical findings in children between 24 months and 12 years of age that are predictive of (GABHS) pharyngitis as documented by positive throat culture and/or serology.

Secondary objectives;

To describe the prevalence of (GABHS) pharyngitis in children seeking care for the complaint of sore throat under different conditions.

To describe the variation in (GABHS) strains and association with clinical manifestations of streptococcal pharyngitis.

To describe the prevalence of (GABHS) carrier state in patients with acute respiratory infections (ARI).