Faculty of Medicine
Ain Shams University
Dep. of Otorhinolaryngology

The Role of Bone Anchored Hearing Aids in The Management of Hearing Loss

Essay

Submitted For Partial Fulfillment of Master Degree of Otorhinolaryngology

By
Abd El-Raof Atef Mansour
M.B.B.Ch

Supervised

Prof. Dr.
Abd El-Rehim Sarwat
Prof. of Otorhinolaryngology
Ain Shams University

Prof. Dr.
Badr Eldin Mostafa
Prof. of Otorhinolaryngology
Ain Shams University

Dr.
Tamer Abd El-Wahab Abu El-Ezz
Lecturer of Otorhinolaryngology
Ain Shams University

Faculty of Medicine Ain Shams University 2010

كلية الطب جامعة عين شمس قسم الأنف والأذن والحنجرة

دور السماعات المثبتة عظمياً في علاج حالات فقد السمع

توطئة للحصول على درجة الماجستير في الأنف والأذن والحنجرة مقدمة من الطبيب/ عبد الرءوف عاطف منصور بكالوريوس الطب والجراحة

تحت إشراف

الأستاذ الدكتور عبد الرحيم ثروت أستاذ الأنف والأذن والحنجرة جامعة عين شمس

الأستاذ الدكتور بدر الدين مصطفى أستاذ الأنف والأذن والحنجرة جامعة عين شمس

الدكتور تامر عبد الوهاب أبو العز مدرس الأنف والأذن والحنجرة جامعة عين شمس

> كلية الطب جامعة عين شمس 2010

Acknowledgement

First and Foremost, Thanks are Due to ALLAH.

It is great honor for me to express my deepest gratitude and sincere appreciation to Prof. Dr. Abd El-Rehim Sarwat, Professor of Otorhinolaryngology Faculty of Medicine Ain Shams University for guidance, supervision and advice offered to me throughout this work.

I Would like to express my great appreciation to Prof. Dr. Badr Eldin Mostafa, Professor of Otorhinolaryngology Faculty of Medicine Ain Shams University for his support throughout this work.

I would like to express my great appreciation to Dr. Tamer Abd El-Wahab Abu El-Ezz, Lecturer of Otorhinolaryngology Faculty of Medicine Ain Shams University for his great help and cooperation.

My thanks are extended to My Family, Father, Mother and My wife for their support and encouragement.

Aim of the Work

This essay aims to evaluate the role of bone anchored hearing aid (BAHA) system in rehabilitation of patients with hearing loss.

This study includes a review for types, mechanism of action, patient selection, advantages and disadvantages of BAHA system and surgical procedure of implantation with possible perioperative complications.

Content

Item	Page
Aim of the Work	1
Introduction	2
<pre> Chapter (I) Introduction to BAHA System</pre>	4
Chapter (II) Design and Mechanism of BAHA System	9
<pre></pre>	13
Chapter (IV) Advantages and Disadvantages of BAHA System	18
<pre>Chapter (V) The Surgical Procedure</pre>	23
<pre>Chapter (VI) The Peri-operative Complications of BAHA Implantation</pre>	34
❖ Chapter (VII) BAHA in Special Cases	38
<pre> Chapter (VIII) Modifications of BAHA</pre>	47
Summary and Conclusion	51
References	53
Arabic Summary	-

List of Abbreviations

LF	:	Low frequency.
MF	:	Middle frequency.
HF	:	High frequency.
DBC	:	Direct bone conduction.
ВАНА	:	Bone anchored hearing aid.
C°	:	Centigrade
FDA	:	American food and drug administration
HL	••	Hearing loss.
SNHL	:	Sensorineural hearing loss.
BC	:	Bone conduction.
AC	:	Air conduction.
SSD	:	Single sided deafness.
CROS	:	Contralateral routing of signals
dB	:	deci Bell.
PTA	:	Pure tone average.
KHZ	:	Kilo hertz.
PB	:	Phenotric balanced.
US	:	United states.
HZ	:	Hertz.
mm	:	Millimeter
mg/ml	:	Milligram per mill.
μg/ml	•	Microgram per mill.
Iv	:	Intravenous.
NDSC	:	National deaf children society.
BMLD	:	Binaural masking level differences.
АРНАВ	:	Abbreviated profile of hearing aid benefit.
BEST	:	Balanced electromagnetic separation transducer.
BASS	:	Bone anchored sound stimulator.

List of Figures

Figures No.	Item	Page
	Chapter I	
	ntroduction to BAHA System	
Fig. (1-1)	: Direct bone conduction.	6
	Chapter II	
_	n and Mechanism of BAHA System	
Fig. (2-1)	: Components of the BAHA: Titanium	9
	fixture, external abutment, and a sound	
	processor.	
Fig. (2-2)	: The percutaneous transducer system: (1)	10
	Skull bone, (2) Soft tissue, (3) Titanium	
	fixture, (4) Titanium abutment, (5) Bayonet	
	coupling and (6) Percutaneous transducer.	
Fig. (2-3)	: The generic design of the BAHA (Amp=	11
	amplifier, Mic= microphone, Bat= battery).	
	Chapter V	
	The Surgical Procedure	
Fig. (5-1A)	: Site planning of the implant.	25
Fig.(5-1 B)	: Post auricular U shaped incision.	26
Fig. (5-1	: A cruciate incision in the periosteum.	26
C)	1	
Fig. (5-1	: Drilling machine.	27
D)		
Fig. (5-1	: Drilling process.	28
E,F)		
	: Tissue reduction and preparation.	29
G, H)		

Fig.	(5-1	:	Attachment of pre-mounted fixture to the	30
I)			abutment insertor.	
	(5-1 K)	:	Implant installation and flap suturing.	31
Fig.		:	A healing cap and sound processor fitting.	32
-	M) (5-2)	:	One month after BAHA implantation.	33
			Chapter VI	
T	he Per	ri-	operative Complications of BAHA	
			Implantation	
Fig.	(6-1)	:	Loss of skin graft.	35
			Chapter VII	
			BAHA in Special Cases	
Fig.	(7-1)	:	BAHA contra lateral routing of offside signal.	44
			Chapter VIII	
			Modifications of BAHA	
Fig.	(8-1)	:	The implanted bone anchored hearing Aids.	48
Fig.	(8-2)	:	An osseointegrated percutanous electrical	49
			coupling system with three transmission lines.	

List of Tables

Table No.		Item	Page
Table (1)	:	Selection criteria for BAHA.	17
Table (2)	:	Types and numbers of complications due	35
		to surgical implantation.	

Introduction

The number of cases with hearing loss in adults and children has doubled during the last 30 years. This makes hearing loss one of the commonest causes of communication disorders which greatly affect education, employment and patients well-being (*Benson and Marano*, 1998).

The mode of treatment depends on the cause, the type, and the severity of hearing loss. Common treatments include drugs, surgery and hearing aids (*Steven*, 1983).

The bone anchored hearing aid (BAHA) system is a surgically implantable system for the treatment of conductive and mixed types of hearing loss. It works through natural skull bone transmission as a pathway for sound to travel to the inner ear, bypassing the external auditory canal and the middle ear. By this principle we can overcome some hearing problems as congenital malformations in the middle or external ear and therapy resistant middle ear infections with patent external auditory canal (*Snik et al.*, 2005).

There are many advantages of this system over conventional hearing aids. Reduction of incidence of ear infections is considered the most important advantage. A dryer ear is a constant finding and implies that patients will require fewer visits to otolaryngology department with better communication performance (*Mylanus et al.*, 1998).

The bone anchored hearing aid (BAHA) system consists of three parts: a titanium implant, an abutment and a sound processor. The titanium implant is placed during a short surgical procedure and over time naturally integrates with the skull bone. With high degree of safety and limited numbers of serious complications (*Tjellstrom et al.*, 2001).

Rare complications after (BAHA) implantation include loss of skin graft, skin growth over the abutment and implant extrusion. Most of complication are successfully treated in an office setting (*Shirazi et al.*, 2006).

Introduction to BAHA System

Physiology of bone conduction:

Because the inner ear (the cochlea) is embedded in a bony cavity (bony labyrinth) in the temporal bone, vibrations of the entire skull can cause fluid vibrations in the cochlea it self. Therefore, under appropriate conditions, tuning fork or an electronic vibrator placed on any bony protuberance of the skull (specially on the mastoid process), causes the person to hear the sound, unfortunately, the energy available even in very loud sound in the air, is not sufficient to cause hearing through. The bone except when a special electromechanical sound transmitting device is applied directly to the bone (*Stevens*, 1983).

The bone conducted sound is transmitted to the inner ear basically by three modes of excitation, as follows:

Low frequency (**LF**), inertial movement of the middle ear ossicles and the inner ear fluids excited by acceleration of the temporal bone.

Middle frequency and high frequency (**MF+HF**), compressional excitation of the inner ear spaces caused by dimensional changes of the cochlear shell.

High frequency (**HF**), sound energy radiated into the external ear canal and middle ear cavity transmitted via the middle ear ossicles to the cochlea (*Tonndrof*, 1966).

The three modes of excitation have different significant in different frequency ranges. The three modes are also valid for direct bone conduction (d.b.c), because the acoustic pathways to the cochlea are the same for conventional and direct bone conduction (*Anthony and Maniglia*, 1995).

Hearing by bone conduction:

The general idea of a conventional bone conduction hearing device is that the bone-conduction sound by passes an impaired or diseased external or middle ear. With the introduction of the BAHA, on new type of excitation was introduced, called direct bone conduction (dbc). In which the sound transmission without the skin and soft tissue being part of the vibration transmission, path between the transducer and the skull bone. (*Hakansson et al.*, 1984).

Problems:

Although conventional bone-conduction hearing aids have been used successfully for many years, they are associated with a number of practical problems that may result in limited use or patient rejection. The bone conduction transducers have to be pressed firmly against the skull to achieve sufficient sound transmission. This is accomplished by wearing a headband or special spectacles with a rigid frame. The pressure needed to apply the device effectively often causes skin irritation, itching headaches and sometimes skin ulcers. In addition, the head band or special spectacles are often clumsy and unattractive. Another problem is a technical shortcoming of transcutanous bone conduction. This implies that relatively powerful amplifiers are needed. Therefore problems with gain and the maximum output of the device may limit the patient's performance (*Snik et al.*, 2004).

These problems has been overcomed by the introduction of the bone anchored hearing aid "BAHA" system. BAHA system is a surgically implantable percutanous temporal bone stimulator in which percutanous device penetrates the skin. This system depends on direct bone conduction (d.b.c) and osseointigration which works by enhancing natural bone transmission as a pathway for sound to travel to the inner ear bypassing the external auditory canal and middle ear (*Jaclyn et al.*, 2002).

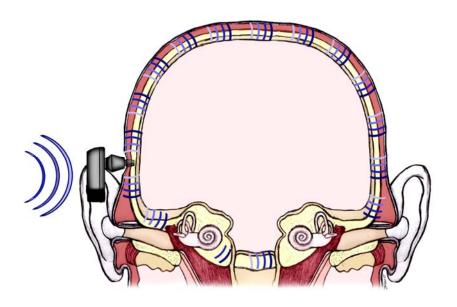


Fig. (1-1): Direct bone conduction (Jaclyn et al., 2002).

To understand principle of BAHA system we should highlight on osseointegration process and its parameters of fixation.