

Synthesis and Study of Crystal, Magnetic and Electric Properties of (Copper –Zinc –Gallium) Ferrites

A Thesis Submitted to

Women's College for Arts, Science and Education Ain Shams University For the Ph. D. Degree in Science "Solid State Physics"

Ву

Salwa Mohamed Ismail

Assistant Lecturer of Solid State Physics, Reactor Physics Department Atomic Energy Authority

Under Supervision

Prof. Dr. H.A. Zayed

Physics Department, University College of Women (Arts, Science and Education)- Ain Shams University.

Prof. Dr. M.K. Fayek

Department of Reactor Physics, Atomic Energy Authority.

Prof. Dr. S.S. Ata -Allah

Department of Reactor Physics,
Atomic Energy Authority.

 $(\Upsilon \cdot \cdot \wedge)$

Synthesis and Study of Crystal, Magnetic and Electric Properties of (Copper– Zinc- Gallium) Ferrites

Submated By

Salwa Mohamed Ismail

Supervisor Committee

Signature

\- Prof. Dr. H. A. Zayed.

Physics Department, University College of Women. (Arts, Science and Education) Ain Shams University.

Y- Prof. Dr. M. K. Fayek

Reactor Physics Department, Nuclear Research Center, Atomic Energy Authority.

^γ- Prof. Dr. S. S. Ata –Allah

Reactor Physics Department, Nuclear Research Center, Atomic Energy Authority.

Date of Research: / / Y · · A

Approval Stamp: Date of Approval: / / Y · · ^

Approval of Faculty Council:

Approval of University Council:

Ain Shams University Women's College for (Arts, Science and Education)

Name of Student: Salwa Mohamed Ismail

Assistant Lecturer of Solid State Physics,

Reactor Physics Department Atomic Energy Authority

Title of Thesis: Synthesis and Study of Crystal, Magnetic

and Electric Properties of

(Copper –Zinc –Gallium) Ferrites

Scientific Degree: Doctor of Philosophy in Science

"Solid State Physics"

Department: Physics

Name of Faculty: University College of Women

(Arts, Science and Education)

University: Ain Shams University.

B.S.C. Graduation Date: 1944

M.S.C. Graduation Date: 1999

Ph. D. Graduation Date: Y.A.

ACKNOWLEDGEMENTS

I'm greatly indebted to *Prof. Dr. H. A. Zayed*, the Ex /Dean of University College of Women, (Arts, Science and Education)-Ain Shams University for encouragement and supervision of this work.

I would like to express my deep gratitude to *Prof. Dr. M. K. Fayek*, the former vice chairman of the Atomic Energy Authority of Egypt for his keen interest, valuable suggestions encouragement, supervision and critical remarks he made during this work. I'm greatly honored to get opportunity to work with him.

I am grateful to *Prof. Dr. S. S. Ata-Allah*, Head of Nuclear Solid State Group, Reactor Physics Department, Atomic Energy Authority for continuous supervision, valuable suggestions, encouragement and fruitful advice through this work.

I am grateful to Dr. M. Kaiser for her continuous help and encouragement during this work.

I wish to express my deeply thanks to Prof. Dr. N. Zahran, Head of Central Laboratory for Elemental and Isotopic Analysis, for her encouragement and helping in some of the measurements.

This work has been done at laboratory of "Nuclear Solid State Group, Reactor Physics Department, Atomic Energy Authority" so I would like to express my deep thank for all colleagues at the laboratory for their encouragement.

CONTENTS

	Pag No.
Aim of work	
Abstract	
Summary	
Chapter I: 1.1. Introduction	1
1.7. General outline on ferrites	7
1.7. Literature review	٤
Chapter II: Structure properties	11
7.1 Structure aspects of spinel ferrites	11
Y.Y.Y Crystal Structure	11
7.1.7. Distribution of the metal ions in spinel cubic unit co	ell ۱۷
Y.Y. Factors affecting the cation distribution in spinel un	it cell
Y.Y. Crystal field theory	۲.
Jahn-Teller distortion	70
Y.Y. Magnetic properties	**
۲.۳.1. Nèel theory of ferrimagnetism	77
۲.۳.۲. Types of interactions in ferrimagnetics	79
۲.٤. Electrical properties	٣٢
۲.٤.۱. Mechanisms of the electrical conduction in transitio metal oxides	n r£
i) Band and hopping mechanisms	٣٤
ii) Verwey model	70
iii) Polaron model	70
۲.٤.۲. Dielectric losses	٣٧
$r.\epsilon.r.$ Frequency dependence of the loss tangent $(tan\delta)$	٤.

Chapter III: Experimental details.

7.1. Preparation of samples.	٤٢
T. 1.1 X—ray powder diffraction.	٤٤
T.1.7 Elemental analysis using Energy Dispersive X-ray (EDX)	٤٤
7.7. Mössbauer effect spectroscopy	٤٦
T.Y. Introduction	٤٦
I) Nuclear decay of °Co isotope	٤٦
II) Recoil and line broadening.	٤٧
III) Resonant absorption.	٤٨
IV) Recoilless emission and absorption.	٤٩
V) Doppler shift.	٤٩
VI) Recoil-free events.	٥,
T.Y.Y Mössbauer effect parameters.	01
I) Isomer shift	01
II) Quadrupole splitting	٥٣
III) Magnetic hyperfine splitting	00
T.Y. To Description of the Mössbauer effect spectrometer	٥٩
۳.۲.٤ Calibration of the ME spectrometer	٦٥
T.T Electrical measurements.	٧٢
Chapter IV: Results and discussion	
E. \ Structural and compositional analysis	Y Y
٤.١.١ X -Ray diffraction results.	Y Y
٤.١.٢ Energy Dispersive X-ray (EDX) analysis.	٨١
E.N. Composition dependence on density, porosity and grain size:	٨٢
4.7 Mössbauer effect results	٨٥
٤.٢.١. Cation distribution	٨٨
٤.٢.٢. Quadrupole interaction	٨٩

$\mathfrak{t}.Y.\mathfrak{t}$. Hyperfine magnetic fields H_{hf}	91
E. Results of the electrical measurements	90
٤.٣.١ Temperature and frequency dependence of conductivity.	90
٤.٣.٢ Frequency dependence of the dielectric parameters.	١١.
I) Dielectric loss tangent 'tanδ'	١١.
II) Real part $arepsilon'$ and imaginary part $arepsilon''$ of dielectric constant $arepsilon$	111
٤.٣.٣ Temperature dependence of the dielectric parameters	177
I) Dielectric loss tangent tan (δ)	177
II) Dielectric constant ε' and imaginary part of dielectric constant	177
۲.٤ Transition temperature T _N	۱۳.
General conclusion	177
References	150
Arabic summary	

LIST OF TABLES

		Page No.
Table (۲.۱)	The crystallographic data for the cubic unit cell of the spinel structure.	10
Table (۲.۲)	The crystallographic data for the tetragonal unit cell of spinel structure.	١٦
Table (٣.١)	Prefirring and sintering temperature for $CuFe_{\tau}O_{\epsilon}$ and $Cu_{1-x}Zn_{x}Ga$. ${}_{\circ}Fe_{1,\circ}O_{\epsilon}$ samples	٤٣
Table (٣.٢)	ME parameters of the standard materials (α - Fe _Y O _Y , Metallic iron and Stainless steel at room temperature)	٦٥
Table (٤.١)	Lattice parameters and unit cell volume for tetragonal unit cell $CuFe_{\tau}O_{\epsilon}$ and $Cu_{\gamma-x}Zn_{x}Fe_{\gamma,s}Ga_{\gamma,s}O_{\epsilon}$ ($\cdots \leq x \leq \cdots \rangle$).	YY
Table (٤.٢)	Lattice parameters and unit cell volume for the cubic unit cell $Cu_{1-x}Zn_x Fe_{1.0}Ga_{1.0}O_{\epsilon}$ ($x \le x \le$).	۸.
Table (٤.٣)	Values of the elemental analysis obtained from (EDX) (Exp.) and the calculated (Cal) for $CuFe_{\tau}O_{\epsilon}$ and $Cu_{1-x}Zn_{x}Fe_{1,\circ}Ga_{-\circ}O_{\epsilon}$ (••• $\leq x \leq$ •••) ferrite samples.	٨٢
Table (٤.٤)	Density, porosity and grain size data for the spinel ferrite CuFe ₇ O ₅ and Cu _{1-x} Zn _x Ga ₁₋₅ Fe ₁₋₅ O ₅	٨٤
Table (£. 0)	Cation distribution over A –and B –sites for $Cu_{1-x}Zn_xFe_{1.0}Ga_{1.0}O_{\epsilon}$ spinel system.	٨٩
Table (٤. ⁷)	ME parameters at Υ 9 Γ K for $Cu_{1-x}Zn_xGa.$ \circ Fe $_1.\circ O_{\epsilon}$ spinel ferrite.	98
Table (£. 1)	ME parameters at \Y K for Cu _{1-x} Zn _x Ga•Fe _{1•} O _£ spinel ferrite	9 £
Table (£.1)	Activation energy at low and high frequencies for $Cu_{1-x}Zn_xGa_{1-x}Fe_{1-x}O_{\xi}$ spinel ferrites	117

LIST OF FIGURES

		Page No.
Fig.(۲.1)	(a) The cubic unit cell of the spinel structure(b) Two octants of the spinel unit cell	17
Fig.(۲.۲):	(a) Cubic close- packed structure.(b) Tetrahedral site.(c) Octahedral site.	۱۳
Fig.(۲.۳)	(i) Metal atom in octahedral B- and tetrahedral A-site(ii) The angular distribution of the <i>d</i> orbital.	۲۱
Fig.(۲.٤)	The crystal field originates from an electrostatic interactions; (a) The d_{xy} orbital in lower energy (b) The $d_{x^2-y^2}$ orbital in octahedral environment.	**
Fig.(Y.°)	The crystal field in an (a) Octahedral (b) Tetrahedral environment.	74
Fig.(۲.٦)	Electronic configurations for the (a) high-spin (weak-field) (b) low-spin (strong-field) cases for a rd ion.	۲ ٤
Fig.(Y.Y)	Jahn –Teller distortion.	77
Fig.(۲. [^])	Interatomic distances and inter bond angles in the spinel where p, q, r, s are the distance between metal ions Me and Oxygen ions.	**
Fig.(۲.۹)	Nèel model of ferromagnetism.	71
Fig.(۲.۱۰)	Nearest neighbor to an oxygen ion showing <i>A-B</i> interaction through the oxygen ion.	79
Fig.(۲.۱۱)	Superexchange interaction.	٣.
Fig.(۲.17)	Double-exchange interaction.	٣١
	(a) Before exchange. (b) After exchange,	

Fig.(۲.1۳)	The shape of the polarization well.	٣٧
Fig.(۲.15)	 a) Equivalent circuit for dielectric losses b) Variations of tan δ with frequency with normal resonance like behavior c) Variation of tan δ with frequency at constant temperature 	٣٩
Fig.(٣.١)	Construction of Energy Dispersive X-Ray detector	٤٥
Fig.(٣.٢)	Nuclear decay scheme for ° Co isotope	٤٦
Fig.(۳.۳)	Recoil in a free nucleus during gamma ray emission.	٤٧
Fig.(٣.٤)	Gamma Emission and Absorption in free atoms R: is the energy shift produced by the recoil effect E_r : is the resonance energy, δ : is the Doppler width.	٤٨
Fig.(٣.°)	Nuclear energy levels and the isomer shift.	٥٢
Fig.(٣.٦)	Nuclear energy levels and the quadrupole splitting	0 8
Fig.(r.v)	Hyperfine splitting of nuclear energy levels in a magnetic field	٥٨
Fig.(r.h)	The wave forms relative to the incoming bistable signal; a)- The high square waveform created by BOR+ generator integrated by the ⁷ Hz generator b)- The velocity waveform. c)- The drive waveform.	٦١
Fig.(٣.٩)	 a)- The gamma-ray spectrum for the used ° Co source in the PHA mode for the PCA-II analyzer. b)- The spectrum after the separation of \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	٦٤
Fig.(٣.١٠)	ME spectra at room temperature of (a) α-Fe _Y O _Y , (b) Metallic iron (c) Stainless steel.	٦٦
Fig.(٣.١١)	Block diagram for the installed closed cycle cryogenic variable temperature workstation attached with the ME equipment.	٦ ٩

Fig.(٣.١٢)	The ME spectra of the natural pure iron foil at room temperature and at \\ K.	V 1
Fig.(٣.1٣)	Block diagram of the adaptive technique used for ac and dc electrical measurements.	٧٣
Fig (٣.١٤)	Block diagram for the circuit used in the ac electrical measurements for CuFe _Y O _E sample	٧٤
Fig.(٤.\)	X-ray powder diffraction patterns for $CuFe_{\tau}O_{\epsilon}$ and $Cu_{1-x}Zn_{x}Ga_{-x}Fe_{1-x}O_{\epsilon}$ spinel ferrite.	٧٨
Fig.(£.Y)	Tetragonal distortion of MO ₇ octahedron and the ^{r}d orbital energy splitting by the octahedron (O _h) and the tetrahedral site symmetries for Cu ⁷⁺ ($d^{^{4}}$).	V 9
Fig.(٤.٣)	Elemental analysis for CuFe ₇ O _£ , CuGa. •Fe ₇ •O _£ and Cu. •Zn. •Ga. •Fe ₇ •O _£ ferrite samples.	۸١
Fig.(٤.٤)	ME spectrum for CuFe ₇ O ₅ at ⁷⁹⁷ K.	٨٦
Fig.(٤.0)	ME spectra for Cu _{1-x} Zn _x Ga Fe ₁ O ₅ compounds	٨٧
Fig.(٤.٦)	ME parameters for Cu _{1-x} Zn _x Ga Fe _{1.0} O spinel at ¹⁷ K	97
Fig.(£. Y)	Variation of conductivity as $\ln \sigma$ verses reciprocal of temperature $\text{```'}/T$ at the frequency range ``' to `` Hz for CuFe ₇ O ₅ ferrite.	97
Fig.(٤.٨)	In σ versus $\ \cdot \cdot \cdot \cdot / T$ for $Cu_{1-x}ZnxGa_{1-s}Fe_{1-s}O_{\epsilon}(x=\cdot \cdot \cdot , \cdot \cdot \cdot)$ and $\cdot \cdot \cdot \cdot)$ at different frequencies.	97
Fig.(٤.٩)	In σ versus $\neg \cdot \cdot \cdot / T$ for $Cu_{1-x}ZnxGa$. $\sigma Fe_{1,\sigma}O_{\epsilon}(x=\cdot \cdot \cdot ', \cdot \cdot \cdot \xi)$ and $\sigma \circ A$ at different frequencies	٩٨
Fig.(ξ . \cdot)	Activation energy versus Zn^{τ_+} content for $Cu_{1-x}Zn_xGa_{1,\circ}Fe_{1,\circ}O_{\epsilon}$ at different frequencies.	1.7
Fig.(٤.))	Plot of dc conductivity as $(ln\sigma)$ verses reciprocal of temperature $(1/T)$ for $Cu_{1-x}Zn_xGa_{-x}Fe_{1-x}O_{\epsilon}$	١٠٤
Fig.(٤.١٢)	Activation energy versus Zn content of $Cu_{1-x}Zn_xGa$. $\circ Fe_{1,\circ}O_{\epsilon}$	1.0

Fig.(٤.١٣)	Variation of conductivity as $\ln (\sigma_{ac})$ with frequency as $\ln (\omega)$ for $Cu_{1-x}Zn_xGa$. ${}_{\circ}Fe_{1,\circ}O_{\epsilon}$ at different temperatures.	1.4
Fig.(٤.١٤)	Variation of the exponent S of the power low and lnB versus temperature for Cu _{1-x} Zn _x Ga. •Fe _{1.•} O ₅	1.9
Fig.(٤.١°)	Dielectric loss tangent tan (δ) versus log F(Hz) for CuFe _Y O _E and Cu _{1-x} Zn _x Ga ₁₋₂ Fe ₁₋₂ O _E at room temperature	111
	a) at the frequency range (''-'-'Hz)	
	b) at the frequency range $(1 - 1.^{\circ}Hz)$	
Fig.(٤.١٦)	Variation of dielectric loss tangent tan (δ) with frequency as log F for $Cu_{1-x}Zn_xGa_{1-x}Fe_{1-x}O_{\epsilon}$; (x= \cdot . \cdot , \cdot . \cdot) at different temperatures.	118
Fig.(٤.١٧)	Variation of dielectric loss tangent tan (δ) with frequency as log F for Cu _{1-x} Zn _x Ga. Fe _{1.5} O _{ϵ} ; (x= \cdot . $^{\circ}$, \cdot . $^{\circ}$) at different temperature.	112
Fig.(٤.١٨)	Relaxation time $ln(\tau)$ versus reciprocal of temperature $1/T$ for $Cu_{1-x}Zn_xGa$. $_{\circ}Fe_{1,\circ}O_{\epsilon}$	114
Fig.(٤.١٩)	Variation of dielectric constant $\acute{\epsilon}$ and the imaginary part of dielectric constant $\acute{\epsilon}$ " with frequency as $ln(\omega)$ for $CuFe_{\tau}O_{\acute{\epsilon}}$ and $Cu_{1-x}Zn_{x}Ga_{1,0}Fe_{1,0}O_{\acute{\epsilon}}$ at room temperature.	119
Fig.(٤.٢٠)	Variation of dielectric constant ϵ' versus frequency as $ln(\omega)$ for $Cu_{1-x}Zn_xGa_{1-x}Fe_{1-x}O_{\epsilon}$; at different temperatures.	١٢.
Fig.(٤.٢١)	Variation of the imaginary part of the dielectric constant ϵ " versus frequency as $ln(\omega)$ for $Cu_{1-x}Zn_xGa$. ${}_{\circ}Fe_{1,\circ}O_{\epsilon}$; at different temperatures.	171
Fig.(٤.٢٢)	Variation of dielectric loss tangent tan (δ) with temperature for $Cu_{1-x}Zn_xGa_{1-x}Fe_{1-x}O_{\epsilon}$ at different frequencies.	175
Fig.(٤.٢٣)	Variation of dielectric constant ϵ' versus temperature for $Cu_{1-x}Zn_xGa$. ${}_{\circ}Fe_{1}{}_{\circ}O_{\epsilon}(x=\cdot,\cdot,\cdot,\cdot)$, and ${}_{\circ}.$ at different frequencies.	175

Fig.(٤.٢٤)	Variation of dielectric constant ε' versus temperature for $Cu_{1-x}Zn_xGa$. ${}_{\circ}Fe_{1,\circ}O_{\varepsilon}$ ($x=\cdot.^{\circ}$, $\cdot.^{\varepsilon}$, and $\cdot.^{\circ}$) at different frequencies.	170
D' ((Ya)		

- Fig.(ξ . Yo) Variation of the imaginary part of the dielectric constant ξ'' versus temperature for $Cu_{1-x}Zn_xGa_{-x}Fe_{1,x}O_{\xi}$ ($x=\cdot\cdot\cdot$, ·.\, and ·.\) at different frequencies.
- Fig.(ξ . Υ) Variation of the imaginary part of the dielectric constant ε " versus temperature for $Cu_{1-x}Zn_xGa$. ε Fe $_1$. ε O $_{\xi}$ ($x=\cdot$. Υ , \cdot . ξ , and \cdot . ε) at different frequencies.
- Fig.(ξ . $\forall V$) The plot of transition temperature (T_N) against Zn^{Y+} content X for $Cu_{1-x}Zn_xGa_{2-x}Fe_{1-x}O_{\xi}$ ($\cdot \cdot \cdot \leq x \leq \cdot \cdot \cdot \circ$).

AIM OF WORK