

Ain Shams University Faculty of Science

Potential toxicity of algal blooms in Wadi El-Rayian lakes, El-Fayioum (Egypt)

Thesis Submitted for Ph. D. Degree of Science in Botany (Phycology)

By Shymaa Sabry Mohamed Zaher M. Sc. (2006)

Supervisors

Prof. Dr. Ahmed A. El-Awamri

Professor of Phycology botany Department Faculty of Science Ain Shams University

Prof. Dr. Adel H. Konsowa

Professor of Phycology National Institute of Oceanography and Fisheries

Prof. Dr. Mohammed N. Gomma

Professor of marine toxicology National Research Center

Dr.Hoda Shafik Nasr

Researcher of phycology National Institute of Oceanography and Fisheries

Abstract

The present study mainly concerned with the Upper Lake of Wadi El-Rayian, El-Faiyom, Egypt, and the potential toxicity occurrence as a result of algal blooming phenomenon. Algal samples were collected from the Upper Lake from June 2008 to May 2009. Cyanobacterial blooms were recorded during winter from the mid of December 2008 and extended to the first week of May 2009. This study discussed deeply the limiting factors of phytoplankton blooming, either physical or chemical parameters. Also, it detected the potential toxicity of these algae and their effect on the economic fishes inhabiting the lake. Finally, it was an attempt to study the behavior of the bloom forming species namely, Microcystis aeruginosa and M. flos aguae pure culture under lab conditions to find a solution for this problem.

Chlorophyll *a* concentrations indicated that, the lake is highly eutrophic. The higher values were recorded in winter and spring seasons. chlorophyll *a* concentrations during the blooming period, showed a gradual increase at the beginning of the bloom reaching its peak of (1822 µgl ⁻¹) in February, followed by a gradual decrease till the end of the blooming period.

The hepatocyanotoxin, microcystin, was determined by mouse bioassay, brine shrimp bioassay and HPLC and its effect on Tilapia fish.

In the HPLC chromatogram of algal sample, the microcystin peak appears at the same retention time of the standard. The microcystin levels in samples were ranged from 0.11 to 6.53 μ g g⁻¹ dry weight.

Among the environmental factors water temperature is the most important factor determining the dominance of the bloom forming species. The appearance of *Microcystis* bloom during winter season means that the bloom prefers the low water temperature. Phosphorous is the limiting factor in blooming formation, where its level was deeply decreased in winter season ranged from 1.48 μ g 1⁻¹ to 3.72 μ g 1⁻¹. Orthophosphate concentrations fluctuated between 0.65 μ g 1⁻¹ and 332.82 μ g 1⁻¹ during the blooming period. High nitrogen sources entering into the Lake are one of the reasons for the blooming of the microalgae.

In conclusion, the hepatocyanotoxin microcystin was detected in the mixed bloom as well as in the pure isolates of *M. aeruginosa* and *M. flos - aquae*. The toxic effect of algal bloom proved to affect on Tilapia fish at a lab scale which predict in turn to affect on the economic fishes inhabiting the lake.

ongoing recommended studies This study understanding of microalgal toxins in a manner that will interdisciplinary research stimulate with microorganisms. Also, address risk in the aquatic habitats when toxigenic cyanobacteria are present. And to underline the necessity of monitoring programs as well as the improvement of analytical methodologies to efficiently prevent the human health risks as a consequence of microcystins contamination.

Key words: Wadi El-Rayian, *Microcystis aeruginosa*, *M. flos - aquae*, hepatocyanotoxin, Microcystin.

Table of Contents	
Subject	Page
LIST OF TABLES	I
LIST OF FIGURES	II
LIST OF PHOTOS	VII
INTRODUCTION	1
REVIEW OF LITERATURE	5
AIM OF THE WORK	51
MATERIALS AND METHODS	52
1-The area of study	52
2- Sampling Stations	53
3- Collection and Preparation of Samples	59
4- Cyanobacterial toxins	59
4-A-Brine shrimp bioassay	59
4-B-Extraction of cyanotoxins for toxicity	60
determination by mouse bioassay	
4-B-I Mouse bioassay for cyanotoxins	61
detection in mouse units	
4-C- Extraction of cyanotoxins for toxicity	62
determination by High Performance Liquid	
Chromatography (HPLC)	
4-C-I HPLC analysis	63
4-D- Effect of toxic cyanobacteria on fish	64
mortality	
5- Ecological study	65
5-A- Physical Parameters	65
5-A-I- Temperature	65
5-A-II-Transparency and Depth	65
5-B- Chemical Parameters	66
5-B-I-Hydrogen Ion Concentration (pH)	66
5-B-II-Alkalinity	66
5-B-III-Salinity	67
5-B-IV- Ammonium (NH ₄ -N)	68
5-B-V-Nitrite (NO ₂ -N)	68
5-B-VI- Nitrate (NO ₃ -N)	69
5-B-VII- Orthophosphate (PO ₄ -P)	69

5-B-VIII- Reactive silicates (SiO ₃ -Si)	70
5-C- Biological Parameters	70
5-C-I- Chlorophyll <i>a</i>	70
5-C-II- phytoplankton composition	71
6- Bioassay of the bloom forming species under	72
laboratory conditions.	
6-A-Test algae	72
6-B- Culture Medium	72
6-B-1- The GPM medium	73
6-B-2- The modified BG11 medium	74
6-C- Isolation and Purification	75
6-C-1- Sterilization of culture flasks	76
6C-2- Inoculation	76
6C-3- Incubation	77
6D- Methods used for growth parameter	77
determination	
6D-1-Growth rates	78
6D-2- Relative growth rate	78
6D-3- Mean doubling time	79
6E- Bioassay experiments	79
i. Experiment 1 : Light duration	79
ii. Experiment 2:Effect of light	79
intensities on growth cultures of	
Microcystis aeruginosa and M. flos –	
aquae	
iii. Experiment 3: Effect of pH on	80
growth of Microcystis aeruginosa	
and <i>M. flos – aquae</i>	
iv. Experiment 4: Effect of salinity	80
on growth of <i>Microcystis</i>	
aeruginosa and M. flos – aquae	
V. Experiment 5: Effect of nitrogen	81
and phosphorus (N: P) ratio on the	
growth of Microcystis aeruginosa	
and $M. flos - aquae$ under	
laboratory conditions.	

v-1: Different levels of N&P with constant ratio	81
v-2: Constant phosphorus	82
concentration with variable nitrogen	02
values	ı
v-3: Constant nitrogen concentration	82
with variable phosphorus values.	02
7 - Data analysis	83
RESULTS AND DISCUSSION	84
Chapter I:	84
Cyanobacterial Toxins	84
1.Determination of algal bloom using chlorophyll <i>a</i>	85
measurements	0.5
2. Determination of cyanobacterial blooms	89
3. Phytoplankton composition	89
4. Determination of algal bloom using algal cell	90
count)0
5. Cyanobacteria composition	91
6. Cell count of <i>Microcystis flos - aquae</i> and	93
Microcystis aeruginosa))
a) Toxicity determination of collected samples	101
1- Brine Shrimp bioassay	101
i. Brine shrimp assay of Algal sample	101
2- Mouse Bioassay	106
i. Mouse bioassay of algal samples	107
3-High performance liquid chromatography	110
(HPLC) determination of Microcystin	1 1 0
i. HPLC chromatogram of the	110
Microcystin- LR standard	1
ii. The HPLC chromatogram of algal	110
sample	1
b) Effect of <i>Microcystis aeruginosa</i> &	118
<i>Microcystis flos – aquae</i> natural bloom on	ı
Tilapia fish	1
c) Effect of <i>Microcystis aeruginosa</i> and <i>M. flos</i> -	122
aquae pure culture on Tilapia fish	İ

Chapter II:	130
Ecological study	130
A- Physical Parameters	130
i. Temperature	130
ii .Transparency	135
iii. Depth	137
B- Chemical Parameters	138
i. Hydrogen Ion concentrations (pH)	138
ii. Water Alkalinity	141
iii. Salinity	146
iv. Ammonium– N	149
v. Nitrite–N	152
vi. Nitrate – N	154
vii. Orthophosphate – P	156
viii. Reactive Silicate – Si	159
Chapter III:	163
Bioassay of the blue-green algae forming the bloom	163
in Wadi El-Raiyan Upper Lake	
A-Growth curve of <i>Microcystis aeruginosa</i> and	164
M. flos – aquae	
B-Growth parameters	166
C- Factors affecting biomass and dominance of	168
cyanobacterial blooms	
a) Experiment 1: Light duration	169
b) Experiment 2 :Effect of light intensities on	172
growth cultures of Microcystis aeruginosa	
and M. flos - aquae	
c) Experiment 3: Effect of pH on growth	177
cultures of <i>Microcystis aeruginosa</i> and <i>M</i> .	
flos - aquae	
d) Experiment 4 : Effect of salinity on	180
growth cultures of Microcystis aeruginosa	
and M. flos – aquae	

e) Experiment 5 : Effect of nitrogen and	185
phosphorus (N:P) ratio on the growth of	
Microcystis aeruginosa and M flos - aquae	
i. Different levels of N& P with constant	185
ratio	
ii. Constant phosphorus concentration	191
with variable nitrogen values	
iii. Constant of nitrogen concentration	196
with variable phosphorus values	
CONCLUSIONS	201
SUMMARY	203
REFERENCES	214
ARABIC SUMMARY	

LIST OF FIGURES

Fig.	Title	Page No.
1	Map of Wadi El-Rayian Lakes showing Upper Lake and the locations of sampling sites.	55
2	Level of chlorophyll <i>a</i> found during different seasons (Log scale).	86
3	Level of chlorophyll <i>a</i> (µgl ⁻¹) detected during the blooming period in Wadi El-Raiyan from the mid of December 2008 to May 2009.	87
4	Cell count of <i>Microcystis aeruginosa</i> and <i>Microcystis flos - aquae</i> (no. of cells x 10 ⁴ /ml) found at the selected station during different seasons.	94
5	Cell count of <i>Microcystis aeruginosa</i> and <i>Microcystis flos - aquae</i> (no. of cells x 10 ⁴ /ml) found during the blooming period.	95
6	Brine shrimp bioassay of algal samples recorded during winter and spring (2009).	102
7	Brine shrimp bioassay of algal samples during the blooming period recorded from the mid of December 2008 to the first week of May 2009.	103
8	Mouse unit measured during the blooming period from December 2008 to May 2009.	108
9	The HPLC chromatogram of the microcystin - LR standard.	111
10	The HPLC chromatogram of microcystin-LR in cyanobacterial sample detected at station II at the beginning of the blooming period (December 2008).	112

Fig. No.	Title	Page No.
11	Dose response curve of natural bloom of the lake and its effect on Tilapia fish <i>Oreochromis niloticus</i>	119
12	Dose response curve of <i>Microcystis</i> aeruginosa culture effect on Tilapia fish <i>Oreochromis niloticus</i>	122
13	Dose response curve of <i>Microcystis flos - aquae</i> culture effect on Tilapia fish <i>Oreochromis niloticus</i>	123
14	Air temperature °C recorded in the selected sampling sites during different season	131
15	Surface water temperature °C recorded in the selected sampling sites during different seasons.	132
16	Air temperature recorded at the selected station during the blooming period.	133
17	Water temperature recorded at the selected station during the blooming period.	134
18	Level of transparency recorded in the selected sampling sites during different seasons	135
19	Level of Depths recorded in the selected sampling sites during different seasons	138
20	Level of hydrogen ion found in the selected sampling sites during different seasons	139
21	Level of hydrogen ion recorded at the selected station during the blooming period.	140
22	Level of Carbonate alkalinity found in the selected sampling sites during different seasons	141
23	Level of carbonate alkalinity recorded at the selected station during the blooming period.	142

Fig.	Title	Page No.
24	Level of Bicarbonate alkalinity found in the selected sampling sites during different seasons.	143
25	Level of bicarbonate alkalinity recorded at the selected station during the blooming period.	144
26	Level of Salinity recorded in the selected sampling sites during different seasons.	146
27	Level of salinity recorded at the selected station during the blooming period.	147
28	Level of ammonium recorded in the selected sampling sites during different seasons.	149
29	Ammonium concentrations recorded at the selected station during the blooming period.	151
30	Level of nitrite recorded in the selected sampling sites during different seasons.	153
31	Nitrite concentrations recorded at the selected station during the blooming period.	153
32	Level of nitrate recorded in the selected sampling sites during different seasons.	154
33	Nitrate concentrations recorded at the selected station during the blooming period.	155
34	Level of orthophosphate found in the selected sampling sites during different seasons	157
35	Orthophosphate concentrations recorded at the selected station during the blooming period.	158
36	Level of silicate found in the selected sampling sites during different seasons	160
37	Silicate concentrations recorded at the selected station during the blooming period.	161
38	Growth curve (chlorophyll <i>a</i> level) of <i>Microcystis aeruginosa</i> and <i>M. flos - aquae</i> cultivated in BG11 and GPM media	165

Fig.	Title	Page No.
39	Growth curve (cell count values) of <i>Microcystis aeruginosa</i> and <i>M. flos - aquae</i> cultivated in BG11 and GPM media.	165
40	Growth rate (R) of <i>Microcystis aeruginosa</i> and <i>M. flos - aquae</i> cultivated in BG11 and GPM media	166
41	Relative growth rate (K) of <i>Microcystis</i> aeruginosa and <i>M. flos - aquae</i> cultivated in BG11 and GPM media.	167
42	Mean doubling time (G) of <i>Microcystis</i> aeruginosa and <i>M. flos - aquae</i> cultivated in BG11 and GPM media.	167
43	Chlorophyll <i>a</i> values (µgl ⁻¹) of <i>Microcystis aeruginosa</i> and <i>M. flos - aquae</i> cultured at different light duration.	169
44	Cell count (no. of cells x $10^7 l^{-1}$) of <i>Microcystis aeruginosa</i> and <i>M. flos - aquae</i> cultured at different light duration.	170
45	Chlorophyll <i>a</i> values (µgl ⁻¹) of <i>Microcystis aeruginosa</i> and <i>M. flos - aquae</i> cultured at different light intensities.	173
46	Cell count (no. of cells x 10 ⁷ l ⁻¹) of <i>Microcystis</i> aeruginosa and <i>M. flos - aquae</i> cultured at different light intensities.	173
47	Chlorophyll <i>a</i> levels (µgl ⁻¹) of <i>Microcystis aeruginosa</i> and <i>M. flos - aquae</i> cultivated at different hydrogen ion concentrations.	178
48	Cell count (no. of cells x10 ⁷ I ⁻¹) of <i>Microcystis</i> aeruginosa and <i>M. flos - aquae</i> cultivated at different hydrogen ion concentrations.	178
49	Chlorophyll <i>a</i> levels (µgl ⁻¹) of <i>Microcystis aeruginosa</i> and <i>M. flos - aquae</i> cultivated at different salinity concentrations.	181

Fig.	Title	Page No.
50	Cell count (no. of cells x10 ⁷ l ⁻¹) of <i>Microcystis</i>	182
	aeruginosa and M. flos - aquae cultivated at	
	different salinity concentrations.	
51	Chlorophyll a of Microcystis aeruginosa & M.	186
	<i>flos - aquae</i> related to variable N\P ratio.	
52	Cell count of <i>Microcystis aeruginosa</i> & <i>M. flos</i>	186
	- aquae related to variable N\P ratio.	
53	Chlorophyll a of Microcystis aeruginosa & M.	193
	flos - aquae related to constant P and variable	
	N level.	
54	Cell count of Microcystis aeruginosa & M.	193
	flos - aquae related to constant P and variable	
	N level.	
55	Chlorophyll a of Microcystis aeruginosa & M.	197
	flos - aquae related to constant N and variable	
	P level.	
56	Cell count of Microcystis aeruginosa & M.	197
	flos - aquae related to constant N variable P	
	level.	

LIST OF PHOTOS

Plate	Title	Page
No.		No.
I	Photos of Wadi El-Rayian Upper Lake, El-	56
II	Fayioum (Egypt). A : Upper Lake of Wadi El-Rayian during	57
11	the blooming period winter (2009)	31
	B : Magnified part of the bloom forming species winter (2009)	
III	A : Container showing the compact mass of	58
	the bloom collected from Upper Lake of	
	Wadi El-Rayian during winter (2009).	
	B : The blue green color of Wadi El-Rayian Upper Lake water.	
	C: Conical flask showing the density of the	
	bloom collected from Upper Lake of Wadi	
	El-Rayian during winter (2009).	
IV	Photos of <i>Microcystis aeruginosa</i> & <i>Microcystis flos – aquae</i>	72
V	Experiment set up to demonstrate the effect Microcystis aeruginosa & Microcystis flos – aquae culture on 10-day old Tilapia fish	121

LIST OF TABLES

Table No.	Title	Page No.
1	The selected sampling sites from the Upper Lake of Wadi El-Raiyan and the last from	54
	El-Wadi Drain.	34
2	High Performance Liquid Chromatography (HPLC) mobile phase gradient program	63
3	The natural GPM medium	73
4	The modified BG11 medium	75
5	Microcystin-LR concentration determined	
	by (HPLC) in cyanobacterial samples during the blooming period (2008-2009).	114