MOLECULAR GENETIC STUDIES ON THE PRODUCTION OF PHARMACEUTICALLY IMPORTANT SECONDARY METABOLITES IN SOME MEDICINAL PLANTS

By

MONA MOHAMMAD MOGHAZEE ALI DRAZ

B.Sc. Agric. Sc. (Genetics), Ain Shams University, 2005 M.Sc. Agric. Sc. (Genetics), Ain Shams University, 2011

A Thesis Submitted in Partial Fulfillment

Of

The Requirements for The Degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Sciences (Genetics)

Department of Genetics Faculty of Agriculture Ain Shams University

MOLECULAR GENETIC STUDIES ON THE PRODUCTION OF PHARMACEUTICALLY IMPORTANT SECONDARY METABOLITES IN SOME MEDICINAL PLANTS

By

MONA MOHAMMAD MOGHAZEE ALI

B.Sc. Agric. Sc. (Genetics), Ain Shams University, 2005 M.Sc. Agric. Sc. (Genetics), Ain Shams University, 2011

Under the supervision of:

Dr. Fatma Mohamed Ibrahim Badawy (Late)

Prof. of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. El-Sayed H. Hassanein (Late)

Prof. of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University

Dr. Raina Ahmed Abdel-Maksoud Younis

Prof. of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University

ABSTRACT

Mona Mohammed Moghazee Ali Draz. Genetic Studies on Production of some Secondary Metabolites in Medicinal Plants. Unpublished Ph.D. Thesis, Ain-Shams University, Faculty of Agriculture, Department of Genetics, 2018.

The Madagascar periwinkle *Catharanthus roseus* (L.) G. Don (*Apocynaceae*) produces a widespread range of monoterpenoid indole alkaloids (MIAs). Approximately of these secondary metabolites possess therapeutically value. Dimeric MIAs like vincristine and vinblastine that are powerful anti-cancer drugs in widespread use in cancer chemotherapy. Tissue culture of *C. roseus* has been sources of medicinally important MIAs that have suffered from low productivity. Tissue culture technique used to increase these active ingredient components

A protocol for the establishment of *in vitro* tissue cultures of *C. roseus* is described. Callus was initiated from mature leaf explants on MS medium supplemented with source at a concentration of 30 g/L and 1 mg/L of 2, 4 D + 0.1 mg/L of Kinetin, this proved to be more appropriate for callus induction and growth of the Egyptian *C. roseus* and routinely used in this study for callus production and as a control medium in the different treatment experiments. Cultures were incubated in 16 hours lights and 8 hours darks at 22-25°C. All culture media used in this study were adjusted to pH= 5.6 - 5.8 before solidification with 0.8% Agar.

In this study, we have investigated the effect of yeast extract concentration of 0.4 mg/L for three periods (2, 4, and 6 hour) to determine their influence on alkaloid formation in *C. roseus* callus cultures. Addition investigated the effect of transient reporter gene (GUS gene) that presents in *Agrobacterium* cloned into vector pCAMBIA1 1302 of optimal dentistry (OD₆₀₀.). the vector transformed into *Agrobacterium* at different concentration.

Results demonstrated that $OD_{600} = (0.1, 0.4 \text{ and } 0.8)$ Agrobacterium strain balances the need for maximum delivery of gene construct without causing tissue necrosis and cell death.

Real time quantitative RT-PCR using SYBR green I assay was used to analyze the changes in expression of the three of *C. roseus* genes (*strdat* and *wrky1*) in response to different media additives (different periods of yeast extract). The influence of YE in up-regulating of these genes; *str1* showed maximum folding of gene expression (9x) between treated and untreated callus under YE1 (0.4 mg/L YE for 2h) treatment while *dat* gene was up-regulated in YE1 (0.4 mg/L YE for 4h) treatment (12x) and *wrky1* showed maximum folding of gene expression (60x) between treated and untreated callus under YE2 (0.4 mg/L YE for 6h) treatment, The remaining genes represented comparable expression in all treatments. The results showed that differential gene expression can be detected by real time PCR with SYBR green I assay. It also demonstrated the sensitivity of the assay and its ability to detect subtle changes in gene expression.

Key Words: *Catharanthus roseus* (L.) G. Don, Tiusse culture, Alkaloids, Yeast extract, *Agroinfiltration*, RT-PCR, up-regulating, *str1-dat* and *wrky1* genes

ACKNOWLEDGEMENT

Firstly, I'm indebted to ALLAH forever, the most beneficent and merciful for all the favors and for prosperity and patience to achieve this study. I cann't express my feels to thank my parents and my family special thanks to **Fatma** and **Ibrahim Moghazee** to enhance and encourage me.

Secondly, I'd like to thank **Prof. Dr. El-Sayed Hassanein**, Professor Emeritus of Genetics, for helping me either materially or morally and provide all the means and ways to hold my experiences perfectly.

I'd like to thank **Prof. Dr. Fatma Badawy,** Professor Emeritus of Genetics, Genetics Dept., Fac. of Agric., Ain Shams University for her keen supervision, continued assistance, guidance, great interest, encouragement, unlimited guidance throughout the work and writing this thesis and also for her constructive ideas to solve the problems I faced in this study. **Dr. Fatma** never hesitated to be with me whenever I needed help. Her moral support, endurance and advice enable me to stay always on track, I have been very lucky to have a dedicated supervisor like her.

I'd like to thank **Prof. Dr. Rania Younis**, Professor of Genetics, Genetics Dept., Fac. Of Agric., Ain Shams University for his helping me either materially or morally. I'd like to thank cytogenetic lab. "**Prof. Dr. El-Sayed Hassanein**", **Professor Emeritus of** Genetics, Genetics Dept., Fac. of Agric., Ain Shams Univ.

I'd like to thank the group of **Biochemical Genetics Laboratory** for helping me. **and** I'd thank to thank the **Molecular Genetics Laboratory** for helping me.

All thanks and appreciation to all **My Professors of Genetics** in the Genetics department to help me during periods of study and practical work.

CONTENTS

		Page
	LIST OF TABLE	\mathbf{V}
	LIST OF FIGURE	VI
	LIST OF ABBREVIATIONS	IX
I.	INTRODUCTION	1
II.	REVIEW OF LITERATURE	5
2.1.	Significance of Secondary Metabolites in Plants	5
	Madagascar periwinkle (C. roseus); a biological source	
2.1.1.	for pharmaceutically and economically important	
	compounds	6
2.1.1.1.	Alkaloid biosynthesis and its compartmentation in C .	
2.1.1.1.	roseus	7
a.	The important genes in Vinca alkaloids	8
a.1.	Structural genes	9
a.2.	Regulatory genes	10
2.2.	Approaches to increase Vinca alkaloids productivity	14
2.2.1.	Metabolic engineering of the MIA pathway in C.	
	roseus	15
2.2.1.1.	Genetic transformation of C. roseus	16
0	Infection with bacteria; Agrobacterium sp. natural	
a.	genetic engineers	16
b.	Transient transformation via Agroinfiltration	18
2.2.1.2.	Tissue culture technique to increase Vinca alkaloids	20
a.	Optimization of culture conditions	21
b.	Biotic and Abiotic elicitation	22
c.	Yeast extract as a Fungal elicitor	24
2.3.	Approaches to estimate gene expression	26
2.3.1.	Polymerase chain reaction	26
a.	Reverse transcription-polymerase chain reaction	26
b.	quantitative Real timepolymerase chain reaction (qRT-	27

		Page
	PCR)	
III.	MATERIALS AND METHODS	29
3.1	Materials	29
3.1.1.	Plant Material	29
3.1.2.	Bacterial strains	29
3.1.3.	Vector Material	29
3.2.	Methods	30
3.2.1.	Transient transformation technique	30
3.2.1.1.	Optimization of technique conditions	30
a.	E. coli strain "DH5α" experiment	30
a.1.	Activation of E. coli cells	30
a.2.	Competent cells of E. coli to increase the vector	31
a.3.	Transformation of Ca++ competent cells	31
a.4.	Miniprep of plasmid DNA from E. coli	32
b.	A. tumefaciensstrain "LB4404" experiment	33
b.1.	Biochemical Test for Crown Gall Bacteria A.	
U.1.	tumefaciens strain	33
b.2.	Activation of A. tumefaciens strain LB4404 cells	34
b.3.	Competent cells of A. tumefaciens	34
c.	Agroinfiltration experiment	35
d.	Histochemical GUS assay	36
e.	Statistical analysis	37
3.2.2.	Induction of gene expression through some fungal	
3.2.2.	elicitor such as "Yeast Extract"	37
3.2.2.1.	Tissue culture	37
a.	Preparation of Plant Materials	37
b.	Culture Conditions & Callus initiation	37
c.	Callus transfer into medium treatment	38
3.2.3.	Estimation of gene expression in all of treatments	38
a.	Design of primers of candidate genes (bioinformatics)	39
b.	Isolation of target genes	40

		Page
b.1.	RNA extraction	40
b.2.	Agarose gel electrophoresis of RNA	41
L 2	Quality check and quantitation of RNA via	
b.3.	Spectrophotometer	42
c.	PCR techniques	42
c.1.	Reverse transcription-polymerase chain reaction	42
c.2.	DNase treatment	43
c.3.	cDNA synthesis	43
c.4.	Quality check and quantitation of cDNA	44
c.5.	Checking amplification and specificity of primers	44
c.6.	Measurement of gene expression via QRT-PCR	45
IV.	RESULTS AND DISCUSSION	47
4.1.	Optimization of agroinfiltration technique as a	
	transient transformation	47
4.1.1.	Miniprep of plasmid from E. coli and transformation	
	into Agrobacterium	47
4.1.2.	Confirmation for the purity of Agrobacterium strain	
	LB4404 by Benedict's test	49
4.1.3.	Selective strains containing the plasmid depend on	
	selectable marker gene	51
4.1.4.	Estimation of reporter gene expression via	
	Histochemical assay	52
4.1.5.	The validation of reporter gene expression "gus gene"	
	via ImageJ program	58
4.2.	Treatments to increase gene expression that influence	
	into Vinca alkaloids productivity	60
4.2.1.	Optimization of media components in tissue culture	60
4.2.2.	Effect of different Yeast extract treatments on gene	
	expression in biosynthetic secondary metabolites in C.	
	roseus callus	62
4.2.2.1.	Optimization of PCR conditions	64

IV

		Page
a.	Check of primer design and specificity	64
b.	Selection of the endogenous reference gene	64
4.2.2.2.	Measurement of gene expression under yeast extract	
	treatment via real-time PCR	65
a.	Determination of amplification efficiency	65
b.	Estimation of str gene expression under YE treatments	67
c.	Estimation of dat gene expression under YE treatments	68
d.	Estimation of wrky1 gene expression under YE	
	treatments	70
V.	SUMMARY	73
VI.	REFERENCES	77
	ARABIC SUMMARY	

LIST OF TABLES

Table		Page
Table (1)	Over-expression of genes involved in MIA biosynthesis in the cell cultures, hairy roots and whole plants of <i>C. roseus</i>	13
Table (2)	Primer sequences of target genes that were used for real-time PCR.	40
Table (3)	Pixel intensity reads obtained from OD.600 treated leaves images.	59
Table (4)	The level of <i>str</i> gene expression between treated and untreated (control) of c. roseus determined by the comparative $\Delta\Delta$ CT method	68
Table (5)	The level of <i>dat</i> gene expression between treated and untreated (control) of c. roseus determined by the comparative $\Delta\Delta$ CT method	69
Table (6)	The level of wrky1 gene expression between treated and untreated (control) of c. roseus determined by the comparative $\Delta\Delta$ CT method	70

LIST OF FIGURES

Figure		Page
Figure (1)	Chemical structure of vinca alkaloids, (1)	
	vinblastine and (2) vincristine.	7
Figure (2)	Two primary metabolic routes, i.e. the	
	shikimate and the MEP-secoiridoid pathways	
	for TIAs in C. roseus.	9
Figure (3)	Structure and regulatory genes regulated the	
	MIA biosynthesis pathways	12
Figure (4)	Monoindole and Bisindole alkaloids pathway	
	and their compartmentation at intercellular and	
	subcellular level.	16
Figure (5)	Model for the elicitor mediated signal	
	transduction leading to activation of genes in	
	indole alkaloid synthesis pathways.	24
Figure (6)	Overview of transcription factors that can	
	interact with the str and tdc promoters.	26
Figure (7)	Binary vector pCAMBIA, (A) general structure	
	of pCAMBIA vectors, (B) modified structure of	
	pCAMBIA vectors.	30
Figure (8)	Alkaline treatment of plasmid DNA and cell	
	extracts containing plasmid DNA. agarose gel	
	electrophoresis of pCMBIA1302; Three forms	
	of plasmid that extracted from E. coli	49
Figure (9)	Confirming Agrobacterium with Benedict's	
	Reagent; (A) before add Benedict's Reagent;	
	(B) after add Benedict's Reagent.	50
Figure (10)	Activation of two bacterial strains (GV3100	
	and LB4404) respectively, that contain:	
	expression vectors;(selectable marker Amp ^R)	
	and (selectable marker Kan ^R).	52

Figure		Page
Figure (11)	Simulation of natural conditions by Put plants	
	under a lamp for a couple of 2 hours before	
	infiltration and wet them.	54
Figure (12)	Agroinfiltration steps:(1) Covering the small	
	hole with the nozzle and holding a gloved	
	finger to the other side of the leaf, (2) then	
	inject slowly, (3) The infiltrated area turns dark.	
	Mark its limits with a permanent pen.	55
Figure (13)	Histochemical GUS staining was performed 3	
	days after infiltration. Treatment No.1 of	
	agrobacterium with vector that has gus gene	
	(OD ₆₀₀ = 0.1), (A) under white light box	
	transilluminator, (B) Section under the	
	microscope.	55
Figure (14)	Histochemical GUS staining was performed 3	
	days after infiltration. Treatment No.1 of	
	agrobacterium with vector that has gus gene	
	(OD ₆₀₀ = 0.4), (A) under white light box	
	transilluminator, (B) Section under the	
	microscope.	56
Figure (15)	Histochemical GUS staining was performed 3	
	days after infiltration. Treatment No.1 of	
	agrobacterium with vector that has gus gene	
	(OD ₆₀₀ = 0.8), (A) under white light box	
	transilluminator, (B) Section under the	
	microscope.	57
Figure (16)	Control with infiltration buffer, (A) under white	
	light box transilluminator, (B) Section under the	
	microscope	57
Figure (17)	Folding changes of expression of gus as a	
	reporter gene, was determined statistically by	59

VIII

Figure		Page
	use of a one-way analysis of variance (ANOVA) (F<0.05).	
Figure (18)	Healthy calli with appropriate size, shape and color produced using transversal leaf sections as explants.	62
Figure (19)	YE treatment steps; (1) Production of callus, (2) Treatment of callus via 0.4 mg/L of YE, (3) Incubation of treatment at 2- 4 and 6 hours, (4) washing the callus after treatment then extraction RNA.	63
Figure (20)	PCR reaction to confirm primers for the target genes; (No.1 =str, No.2 =dat, No.3 = wrky1 and No.4 = Cr-Actin), Thermo Scientific GeneRuler 100 bp Plus DNA Ladder 100 to 3000 bp was used	64
Figure (21)	A representative view of the amplification plot generated to determine the expression of candidate endogenous reference gene (<i>CrActi</i> n).	66
Figure (22)	RNA extraction from C.= control, YE treatments, 2h, 4h and 6 hours	67
Figure (23)	The folding levels of <i>str</i> gene expression between treated and untreated (control) callus. 2h,4h and 6h YE treatments (0.4 mg/l).	68
Figure (24)	The folding levels of <i>dat</i> gene expression between treated and untreated (control) callus. 2h,4h and 6h YE treatments (0.4 mg/l).	69
Figure (25)	The folding levels of <i>wrky</i> gene expression between treated and untreated (control) callus.	71
	2h,4h and 6h YE treatments (0.4 mg/l).	71

LIST OF ABBREVIATIONS

C. roseus Catharanthusroseus (L.) G. DonMS medium Murashige and skoog medium

Kin Kinetin

JA Jasmonic Acid

2,4 D 2, 4-dichorophenoxyacetic acid

BA Benzyl adenine

NAA α-Naphthaleneacetic Acid

Try. Tryptophan

HPLC High performance liquid chromatography

str Strictosidine synthase

dat Deacetylvindoline O-acetyltransferase

wrky C.roseus (WRKY1) mRNA, complete cds

Transcription Factor

ZCT zinc-finger Catharanthus transcription factor

ORCA octadecanoid-responsive Catharanthus AP2-

domain protein

BPF-1 Catharanthusroseus box P-binding factor 1

homologue

AP2/ERF APETALA2/ethylene responsive factor

GUS β -glucuronidases

X-glu 5-Bromo-4-chloro-3-indolylglucuronide

TIAs terpenoidindole alkaloids

MIA Monoterpeneindole alkaloid

MS Molecular Size

PCR Polymerase Chain Reaction RT-PCR Reverse transcriptase PCR

QPCR Quantitative Polymerase Chain Reaction

TBE Tris boric EDTA

EtBr Ethidium bromide

cDNA complementary DNA

TBE Tris boric EDTA
EtBr Ethidium bromide

A.tumefaciens agrobacterium tumefaciens
YE yeast elicitor or yeast extract

GBF G-box-binding factor

GA gibberellic acid

ET Ethylene

GC-MC Gas chromatography–mass spectrometry

DW Dry Weight**OD.** Optical density