Value of Subtraction MRI in assessing treatment response after Radiofrequency ablation for hepatocellular carcinoma

Thesis

Submitted for partial fulfillment of the master degree in Radiodiagnosis

By **Ahmed Elshenawy Esmail Gabr**

M.B.B.Ch.

Faculty of Medicine, Cairo University

Supervisors

Dr. Reda Hasan Tabashy

Assistant Professor of radiodiagnosis National Cancer Institute Cairo University

Dr. Mohamed Ahmed Hassanein

Lecturer of radiodiagnosis
Faculty of Medicine
Cairo University

Dr. Hisham Samir Wahba

Lecturer of radiodiagnosis National Cancer Institute Cairo University

> Faculty of Medicine Cairo University 2014

بيتمران والتحوي

Acknowledgment

First and foremost thanks to **God** the Most Gracious, the Most Merciful.

I want to express the great honor of working under the supervision of **Dr. Reda Hasan Tabashy**, assistant professor of radiodiagnosis, National Cancer Institute, Cairo University. He has given me guidance and advice in every way he can during the course of this work.

I would like to express my deepest gratitude to **Dr. Mohamed Ahmed Hassanien**, Lecturer of radiodiagnosis, Cairo University; for his guidance and support.

My sincere thanks to **Dr. Hisham Samir Wahba**, Radiodiagnosis Lecturer, National Cancer Institute, Cairo University, who had tirelessly and patiently supervised this work.

My thanks and my love to all my professors and colleagues in the Radiology department for their support. Special thanks to **Dr. Mohamed Samy El Azab,** Lecturer of radiology, National Caner Institute, Cairo University for his great help and advice during this work.

This work would not have been possible without the help of **my dear wife,** I am heartily thankful for his endless love, care and support.

Last but not least I would like to say that I couldn't have reached this point in my life without the enduring efforts of my parents, no words can give them their right or describe how I am indebted to them.

ABSTRACT

Dyanmic MRI with its new subtraction technique is a powerful tool in detection of tumour viability after Radiofrequency ablation of hepatocellular carcinoma. We found that dynamic study is the gold standard in detection of viable residual lesions. Well defined nodular enhancement, thick irregular marginal enhancement or gross enlargement of the lesion with arterial phase enhancement and contrast wash out were considered positive for malignancy. We also found that subtraction technique is very helpful in differentiation between the viable residule /recurrent malignant lesions and the post treatment coagulative necrosis with significant statistical differences between the conventional dynamic MR and when we add the subtraction technique.

KEY WORDS

MRI, Radiofrequency ablation, hepatocellular carcinoma, subtraction.

TABLE OF CONTENTS

List of abbreviations	I - III
List of tables	IV
List of figures	V - IX
Introduction	1-3
Aim of work	4
Chapter 1: Anatomy of the liver	5-14
Chapter 2: pathology of HCC	15-23
Chapter 3: Thermal ablation therapy	24-28
Chapter 4: Technique of MRI of the liver	29-55
Chapter 5: MRI appearance of HCC	56-65
Chapter 6: MRI after thermal ablation of HCC	66-87
Chapter 7: Subtraction MR after thermal ablation	88-92
Patients and methods	93-99
Illustrative cases	100-110
Results	111-123
Discussion	124-131
Summary	132-134
References	135-147
Arabic summary	

LIST OF ABBREVIATIONS

2D	Two dimensional
3D	Three dimensional
ADC	Apparent diffusion coefficient
BB-EPI	black-blood echo planar
ВН	breath-hold
СТ	Computed tomography
DCE	Dynamic contrast enhanced
DW	Diffusion weighted
DWI	Diffusion weighted imaging
EASL	European Association for the Study of the Liver
EPI	Echo planner imaging
FOV	Field of view
FS	Fat suppression
FSE	Fast spin echo
Gd	gadolinium
Gd-BOPTA	gadobenate dimeglumine
Gd-DTPA	gadolinium diethylenetriamine penta-acetic acid
GRE	gradient recalled echo
HCC	Hepatocellular carcinoma
HCV	Hepatitis C Virus
HPI	hepatic perfusion index
IVC	Inferior vena cava

LAVA	liver acquisition with volume acceleration
MIP	Maximum intensity projection
Mn-DPDP	mangafodipir trisodium
MR	magnetic resonance
MRI	Magnetic resonance imaging
MRS	Magnetic resonance spectroscopy
MW	Microwave
MWA	Microwave ablation
RARE	rapid acquisition with relaxation enhancement
RECIST	Response Evaluation Criteria in Solid Tumors
RF	Radiofrequency
RFA	Radiofrequency ablation
ROI	Regions of interest
RT	respiratory-triggered
SD	Standard deviation
SGE	Spoiled gradient echo
SIR	Society of Interventional Radiology
SNR	Signal to noise ratio
SPAIR	spectral selection attenuated inversion recovery
SPIO	superparamagnetic iron oxide
SSFP	steady-state free precession sequence
SSTSE	single-shot turbo spin-echo sequence
STIR	Short-tau (T1)inversion recovery
TACE	Trans arterial chemoembolization

TE	Time of echo
THRIVE	T1 weighted high-resolution isotropic volume examination
TR	Time of repetition
TSE	Turbo spin echo
VIBE	volume interpolated breath-hold examination
WHO	World Health Organization
WI	Weighted images

LIST OF TABELS

		Page
Table 1	Protocol of commonly used sequences in liver MR imaging using 1.5 Tesla	94
Table 2	Demographic features of the studied group	31
Table 3	Crosstab.Signal intensity of the recurrent and well ablated lesions in the non-enhanced T1 weighted images according to Subtraction Dynamic MR.	117
Table 4	Crosstab. Signal intensity of the recurrent and well ablated lesions in the T2 weighted images.	118
Table 5	Chi-square test / Fisher's exact test	119
Table 6	Cross tabulation. Correlation between findings of the first reader (Dynamic MRI) and the second reader (Subtraction Dynamic MRI) regarding the well ablated and residual lesions to detect the degree of agreement and the additive value of subtraction.	120

		Page
Table 7	The degree of agreement and the additive value of the subtraction	120
Table 8	Correlation between the pre-contrast T1 signal intensity and the mismatched findings between the Dynamic MRI (first reader) and the Subtraction dynamic MRI (second reader).	122

LIST OF FIGURES

		Pag
		e
Figure 1	Segmental anatomy of the liver	6
Figure 2	Hypertrophied caudate lobe in liver cirrhosis	7
Figure 3	Normal hepatic arterial anatomy	8
Figure 4	The portal vein and its tributaries	9
Figure 5	Arrangement of the hepatic venous territories	10
Figure 6	Normal biliary anatomy MR cholangiography	11
Figure 7	MR anatomy of the hepatic veins	13
Figure 8	MR anatomy of the portal vein	13
Figure 9	Normal MR liver signal intensity on T1 1 and T2 weighted images	14
Figure 10	Pathway of carcinogenesis in liver cirrhosis	17
Figure 11	Pathology of regenerative nodules	18
Figure 12	Pathology of dysplastic nodules	19
Figure 13	Various radiofrequency (RF) electrodes	26
Figure 14	Schematic illustrates the interaction between water molecules and microwaves	27
Figure 15	Importance of a multichannel array receiver coil.	30
Figure 16	Diffuse hepatic steatosis and hepatic adenoma by dual phase MR images.	31
Figure 17	Hepatic hemangioma imaging with hepatobiliary contrast agents	37

Figure 18	Example of a multiarterial phase acquisition in	39
	a patient with a small HCC	
Figure 19	Schematic illustrates water molecule movement	41
Figure 20	Schematic illustrates the effect of a diffusion-	42
	weighted sequence on water molecules	
Figure 21	Graph illustrates signal intensity versus <i>b</i>	44
	values at <i>DWI</i> of tissue with normal versus	44
	restricted diffusion.	
Figure 22	breath-hold versus respiratory-triggered	46
	diffusion acquisition.	
Figure 23	T2 shine-through in patient with a small cyst in	47
	the left hepatic lobe.	
Figure 24	Perfusion-MRI in patient with hepatocellular	50
	carcinoma.	
Figure 25	concentration-time curve in liver tissue	52
	obtained from a perfusion MRI study.	
Figure 26	Perfusion MR imaging in liver metastasis.	53
Figure 27	Perfusion MR imaging in liver metastasis after	54
ļ 	therapy.	
Figure 28	Typical MR appearance of hepatocellular	57
	carcinoma.	
Figure 29	HCC isointense on T2W MR images.	59
Figure 30	HCC with vascular invasion	61
Figure 31	Fibrolamellar hepatocelluar carcinoma.	62
Figure 32	Hypovascular HCC with fat at MR imaging.	63
Figure 33	Differentiaon between bland and malignant	65
	portal vein thrombosis.	
Figure 34	Regression in the size of the ablation zone at T1	70
	WIs	
Figure 35	Regression in the size of the ablation zone at T2	70
 	WIs	
Figure 36	Signal of the ablation zone at T1 and T2 images	71
Figure 37	Perilesional rim after RFA	72

Figure 38	Liquifactive necrosis at T1 and T2 images.	72
Figure 39	Enhancement pattern of the ablation zone	73
Figure 40	Patterns of peri ablational enhancement	73
Figure 41	Subtraction imaging after RFA	74
Figure 42	Vascular changes after RFA	76
Figure 43	asymptomatic gallbladder wall edema after RFA	77
Figure 44	Perihepatic hemorrhage after RFA	78
Figure 45	Inflammatory enhancement of intercostal muscle adjacent to region of ablation	79
Figure 46	Residual disease after ablation	80
Figure 47	Nodular recurrence after ablation	82
Figure 48	Halo recurrence after ablation	83
Figure 49	Local regrowth depicted only at T2- weighted MR imaging	84
Figure 50	Follow up of fatty HCC	85
Figure 51	DW signal alterations after RF ablation of HCC	86
Figure 52	Diffusion-weighted MRI to evaluate RFA recurrence	87
Figure 53	Diffusion-weighted MRI to evaluate RFA recurrence	87
Figure 54	Subtraction MR after RF	89
Figure 55	Subtraction MR after RF	89
Figure 56	Subtraction MR after RF	90
Figure 57	Subtraction MR after RF(differntiate between bland and malignant portal vein thromobus)	90

Figure 58	Subtraction pitfalls	91
Figure 59	Subtraction pitfalls	92
Figure 60	Case 1	100
Figure 61	Case 2	101
Figure 63	Case 3	102
Figure 63	Case 3	103
Figure 64	Case 4	104
Figure 65	Case 5	105
Figure 66	Case 6	106
Figure 67	Case 7	107
Figure 68	Case 8	108
Figure 69	Case 9	109
Figure 70	Case 10	110
Figure 71	Sex distribution of the study group	111
Figure 72	Classification into resolved and unresolved groups by dynamic MRI	112
Figure 73	Classification into resolved and unresolved groups by Subtraction Dynamic MRI.	113
Figure 74	Classification into resolved and unresolved groups by Dynamic and Subtraction Dynamic MRI.	113
Figure 75	Signal intensity of the ablation zone in non enhanced T1 weighted images	114
Figure 76	Signal intensity of the ablation zone in non enhanced T2 weighted images	115

Figure 77	Correlation between T2 signal intensity of the ablation zone and the residual tumor activity / recurrent neoplastic viability	118
Figure 78	The degree of agreement between the two readers and the additive value of Subtraction technique to the Dynamic MRI study.	121
Figure 79	Correlation between the pre-contrast T1 signal intensity and the mismatched findings (lesions) between the Dynamic MRI (first reader) and the Subtraction dynamic MRI (second reader).	123
Figure 80	Schematic diagram illustrating the principles of subtraction MRI in treatment zones of varying characteristics.	130

