

Ain Shams University
Women's College for Arts,
Science and Education

Comparison of two spectroscopic methods using Atomic Absorption spectroscopy for determination of some elements in food

Thesis Presented by

Noura Fayek Naseh Deweb

B.Sc. (Physics and Chemistry) (2011)

A thesis submitted to
Physics Department, Women's College for Arts, Science and Education,
Ain Shams University
Partial fulfillment of the requirements for the degree of M.Sc. in physics
(Physics- spectroscopy)

Supervisors

Prof. Dr. A. B. El Bialy

Prof. of spectroscopy
Physics department, Women's College
Ain Shams University

Ass. Prof. Dr. S. S. Hamed

Ass. Prof. of spectroscopy
Physics department
Women's College
Ain Shams University

Ass. Prof. Dr. W. M. Mousa

Ass. Prof. of spectroscopy
Physics department
Women's College
Ain Shams University

Ain Shams University Women's College for Arts, Science and Education

A Thesis for M. Sc. In Physics

Noura Fayek Naseh Deweb

Title of Thesis

Comparison of two spectroscopic methods using Atomic Absorption spectroscopy for determination of some elements in food

Prof. Dr. A. B. El Bialy

Prof. of spectroscopy
Physics department, Women's College
Ain Shams University

Ass. Prof. Dr. S. S. Hamed

Ass. Prof. of spectroscopy
Physics department
Women's College
Ain Shams University

Ass. Prof. Dr. W. M. Mousa

Ass. Prof. of spectroscopy
Physics department
Women's College
Ain Shams University

Date of Research: / 2017 **Date of Approval:** / 2017

Approval Stamp:

Approval of Faculty Council: / / 2018

Approval of University Council: / / 2018

Ain Shams University Women's College for Arts, Science and Education

Student name: Noura Fayek Naseh Deweb

Scientific degree: B.Sc.

Department: Physics Department

Faculty: Women's College for Arts, Science and Education

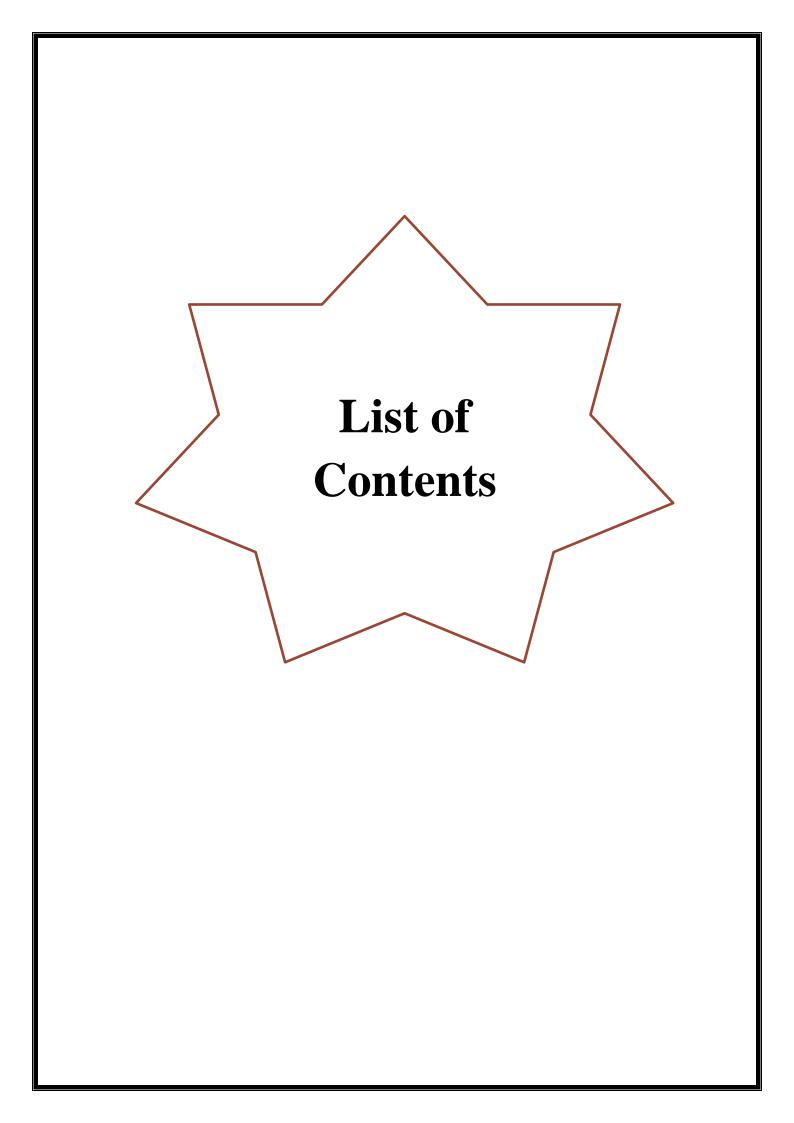
University: Ain Shams University

Date of graduate: 2011

Date of granted: 2018

Ain Shams University
Women's College for Arts,
Science and Education

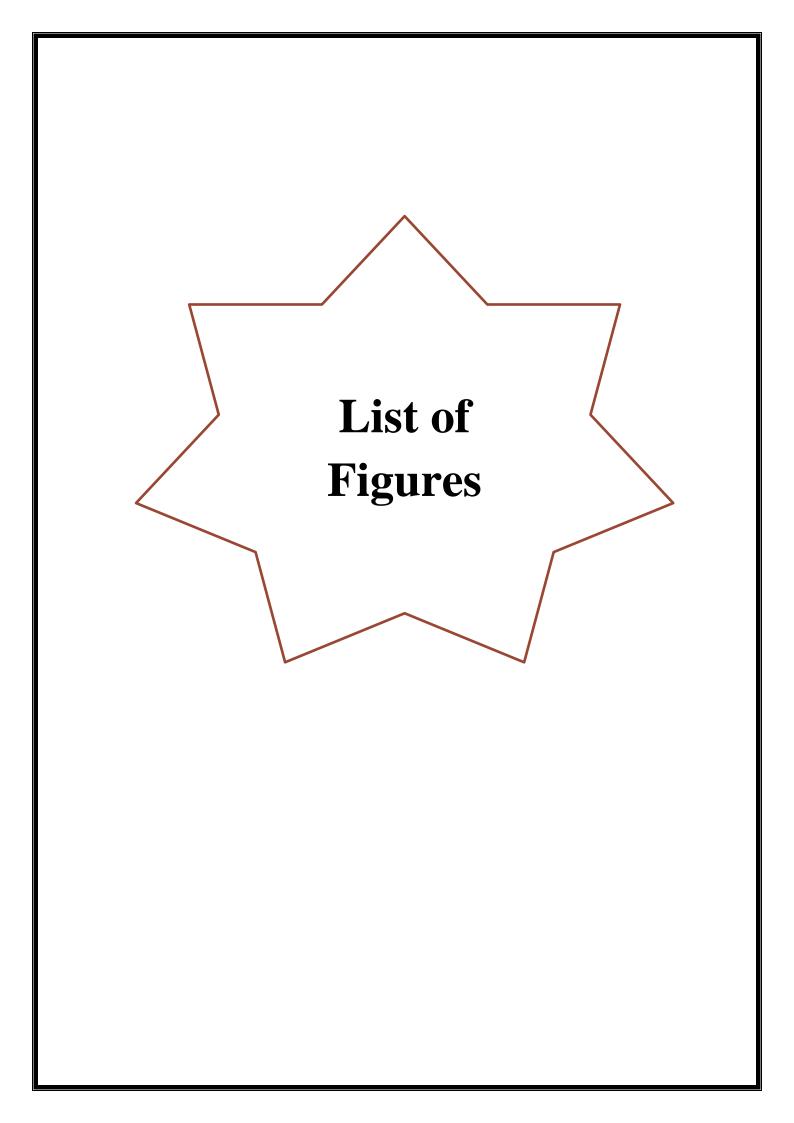
ACKNOWLEDGEMENT


I would like to thank the members of Physics Department Ain Shams University for their sincere help.

I would like to express my deepest thanks to **Prof. Dr. Aida El Bialy**, Department of physics, College of Women, University of Ain Shams, Cairo, Egypt, for her support.

I am especially thankful to Associate Prof. **Dr. S. S. Hamed** Department of physics, College of Women, University of Ain Shams.

I am also thankful to Associate Prof. **Dr. W. M. Mousa** Department of physics, College of Women, University of Ain Shams.


Finally, I am grateful to my family for their patience and support.

List of contents	Page
Acknowledgement	
Abstract	I
Summary	II
Chapter (I)	1
INTRODUCTION	1
Aim of the present work	13
Chapter (II)	14
GENERAL REVIEW	14
Chapter (III)	25
THEORETICAL CONCEPTS	25
3-1: Shape and Width of spectral lines	25
3-2: Line Broadening Effects	27
3-2-1: Natural broadening	27
3-2-2: Doppler broadening	28
3-2-3: Lorentz broadening or collision broadening	28
3-2-4: Holtzmark or Resonance broadening	29
3-2-5: Stark and Zeeman broadening	29
3-2-6: Quenching broadening	30
3-3: The Absorption Coefficient	30
3-3-1: Definition of the Absorption Coefficient, K_{ν}	30
3-3-2: The Integrated Absorption Coefficient, K	32
3-4: The Total Absorption Factor, A_T	33
3-4-1: The definition of A_T	33

3-4-2: Evaluation of A_T for a Sharp Line Source	34
3-5: The Absorbance A, for a Sharp Line Source	35
3-6: Intensity of Spectral line	37
Chapter (IV)	40
INSTRUMENTATION	40
4-1: Flame Atomic Absorption Spectrometer	40
4-1-1: Spectral Light Source	40
4-1-1: The Hollow Cathode Lamp	40
4-1-2: The Atomic Absorption Atomizer	42
4-1-2-1: Premix Burner System	44
4-1-3: Optical System	46
4-1-3-1: Monochromator	46
4-1-4: Background Correction	49
4-1-5: Light Measurement	49
4-2: Inductively Coupled Plasma Atomic Emission Spectrometer	50
4-2-1: The Torch and the ICP ignition	50
4-2-2: Nebulizers	53
4-2-3: ICP Spectrometer optical path and light measurements	54
Chapter (V)	56
RESULTS AND DISCUSSION	56
5-1: Sample Preparation	56
5-2: Preparation of Standard Solution	57
5-3: Analytical Procedures	58
5-3-1: Operating Conditions for FAAS	59

5-3-2: Analytical Calibration Curve	59
5-4: Sensitivity	69
5-5: Precision.	71
5-6: Detection limits	71
5-7: Determination of elements using ICP-AES	74
5-8: Comparison between the measured concentrations from the two techniques	82
CONCLUSION	86
REFERENCES	88
Arabic Summary	1

