

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار % ١-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠ مئوية ورطوبة نسبية من ٢٠-٠٠ في درجة حرارة من ٢٥-٥٠ مئوية ورطوبة نسبية من ٢٠-١٥ be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

بعض الوثائق الاصلبة تالفة

بالرسالة صفحات لم ترد بالاصل

In vitro studies on antitumor bioactive substances of Echallium elaterium

A Thesis Submitted for the Degree of Master of Biochemistry

57%192

 $\underline{\mathbf{B}}\mathbf{y}$

MAI MOHAMMED FARID KOTB

B.SC. Chemistry

CHEMISTRY DEPARTEMENT FACULTY OF SCIENCE CAIRO UNIVERSITY

4N-V

APPROVAL SHEET FOR SUBMISSION

Title of (M.Sc.) Thesis:

In vitro Studies on Antitumor Bioactive Substances of Echallium elaterium

Name of the candidate: Mai Mohammed Farid Kotb

This thesis has been approved for submission by the supervisors:

1. Prof. Dr. Abdelgawad Ali Fahmi

Signature:

B-A-Dal

2. Dr. Ahmed Ibrahim Amin

Signature:

3. PROF. DR. Mahmoud Mohammed Sakr

Ming m. set

Signature:

Prof. Dr. Mohammed Mohammed Shokry

Chairman of Chemistry Department Faculty of Science, Cairo University

DEDICATION

I dedicate this work to my heart felt thanks;

To

My parents and my sister for their patience and help, as well as to my grandmother for all the support and love she lovely offered along the period of my post graduation.

Acknowledgement

First, I thank God for helping me to accomplish this work.

I would like to express my deep thanks and gratitude to **Prof. Dr. Abdelgawad Ali Fahmi,** Professor of Organic Chemistry,
Department of Chemistry, Cairo University, for his support,
encouragement, guidance, and supervision.

Special thanks are forwarded to **Dr. Ahmad Ibrahim Amin** Dr. of Biochemistry, Department of Chemistry, Cairo University, for supervising the work and for his advisement and instruction through out the entire course of the work.

My deep appreciation to **Prof. Dr. Mahmoud Mohammed Sakr**, Prof. of Plant Biotechnology, Plant Biotechnology Department, National Research Centre, for his advice, help, encouragement, and sincere guidance throughout the work.

Thanks to **Prof. Dr. Hussein Said Taha**, Prof. of Plant Biotechnology, Plant Biotechnology Department, National Research Centre, for his advice, help, support, and supervision

Great thanks to **Dr. Sahar Elmekkawy** Dr. of Natural Products, National Research Centre, for her advise, support, encouragement and sincere guidance throughout the work.

Great thanks to my precious family for their deep concern, encouragement, continuous support, endless patience and love.

Finally, thanks are offered to all my colleagues in Plant Molecular Genetic Group, National Research Center for their help and support.

Abstract

Name: Mai Mohammed Farid Kotb

Title of thesis: In vitro Studies on Antitumor Bioactive Substances of Ecballium

elaterium

Degree: M.Sc. in Biochemistry, Faculty of Science, Cairo University

Squirting cucumber (Ecballium elaterium) is an important wild cucurbit member of cucurbitaceae family in the Mediterranean region. Its importance is due to its content from elaterium, an extract rich in cucurbitacins which is known for its medicinal properties. In this study, establishment of tissue cultures from different parts of squirting cucumber, endemic in Egypt was achieved. Different factors affecting in vitro production of cucurbitacins were investigated. Suspension culture was also established and subjected to different elicitors such as salicylic and acetic acids. Inclusions of salicylic and citric acids increase the content of cucurbitacins and stimulate the release of cucurbitacins in the medium. In the second phase of study, 2 L stirred reactor equipped with marine impeller running at 150 rpm was used. The cultures were aerated with 0.3 vvm air and grown at 27°C under non-controlled pH conditions; another factor was studied by increasing the aeration to 0.6 vvm. The obtained data indicated that, the growth was increased and the concentration of cucurbitacins (E, I) was increased and excreted in the medium. The highest recorded level of cucurbitacins under the aforementioned condition was 0.3 and 0.1 g/l for cucurbitacin E and cucurbitacin I, respectively. Crude cucurbitacins extract show antitumor activity against some cancer cell lines and antimicrobial activity in different degrees.

Keywords: Ecballium elaterium, Cucurbitacins, Antitumor activity, Tissue culture

Supervisors:

1.

3. Mus M sak

Prof. Dr. Mohammed Mohammed Shokry

Chairman of Chemistry Department Faculty of Science, Cairo University

CONTENTS

Chapter1: Introduction	1
Chapter 2: Review of Literature	4
2.1. Plant specification.	4
2.2. In vitro studies on cucurbitaceae family plants	7
2.2.1. Callus production.	7
2.2.2. Regeneration in cucurbitaceae family	11
2.2.3. Effect of abiotic stress on accumulation of secondary metabolites	17
2.3. Large scale production of secondary metabolites using bioreactor	19
2.4. Cucurbitacins: Chemical analytical studies	26
2.5. Biological activity of cucurbitacins	35
Chapter 3: Experimental	46
3.1. Instruments	46
3.2. Effect of different growth regulators (auxins and cytokinins) in	
production of calli cultures from different explants of Ecballium elaterium	48
3.2.1. Seeds Source	48
3.2.2. Preparation of nutrient medium	48
3.2.3. In vitro seeds sterilization and germination	48
3.2.4. Plant materials	51
3.2.5. Preparation of growth regulators (auxins and cytokinins) stock	·
solution	51
3.2.6. Callus induction	52
3.2.6.1. Percentage of callus formation	52

3.2.6.2. Calli fresh weight (g /jar)	53
3.2.6.3. Calli dry weight (g / jar)	53
3.2.7. Regeneration via organogenesis	53
3.2.7.1. From apical shoot tips	53
3.2.8. Effect of some growth regulators on production of cucurbitacin	
E and I	53
3.2.9. Effect of some precursors on enhancement and accumulation of	
cucurbitacin E and I	54
3.2.9.1. Effect of chitosan	54
3.2.9.1.2. Elicitation	54
3.2.9.2. Effect of acetic and citric acids.	55
3.2.9.3. Effect of mannitol	55
3.2.9.4. Effect of salicylic acid	56
3.2.9.5. Dry weight determination	56
3.2.10. Extraction of cucurbitacins	56 .
3.2.10.1. Extraction methods	57
3.3. Large scale production of cucurbitacins using bioreactor	57
3.3.1. Phenol sulphuric acid method for determination of total carbohydrate	59
3.4. Qualitative and quantitative determination of cucurbitacin I and E in the	
total cucurbitacins using HPLC technique	60
3.4.1. Standard curve of cucurbitacin E	61
3.4.2. Standard curve of cucurbitacin I	62
3.4.3. Statistical analysis	64
3.5. Determination of cucurbitacin activity as antimicrobial	64
3.5.1. Preparation of the extract	64
3.5.2. Bacterial strains	64
3.5.3. Antimicrobial activity evaluation	64
3.6. Biological activity of cucurbitacins	65
3.6.1. Drugs	65

3.6.2. Human tumor cell lines	65
3.6.3. Chemicals	65
3.6.4. Buffers	67
3.6.5. Cells and culture conditions	67
3.6.5.1. Maintenance of the human cancer cell lines in the laboratory	67
3.6.5.2. Collection of cells by trypsinization	67
3.6.5.3. Determination and counting of viable cells	68
3.6.5.4. Cryopreservation of cells	68
3.6.6. Sulphorhodamine-B (SRB) assay of cytotoxic activity	69
3.6.6.1. Principle	69
3.6.6.2. Procedure.	69
3.6.6.3. Calculation.	70
Chapter 4: Results	÷
4.1. Effect of different growth regulators (auxins and cytokinines) in product	ion
of calli cultures from different explants of Ecballium elaterium	71
4.1.1. <i>In vitro</i> seeds sterilization and germination	71
4.1.2. Callus induction.	71
4.1.2.1. Percentage of callus formation.	72
4.1.2.2. Calli fresh and dry weights (g /jar)	75
4.1.3. Regeneration <i>via</i> organogenesis	80
4.1.3.1. From apical shoot tips	80
4.1.4. Effect of some growth regulators on production of cucurbitacin	
E and I	83
I. In calli cultures	83
II. In regenerated shoots	83
4.1.5. Effect of some elicitors on enhancement and accumulation of	
cucurbitacin E and I in different Echallium calli cultures	86
4.1.5.1. Effect of chitosan	96

4.1.5.2. Effect of acetic acid	89
4.1.5.3. Effect of citric acid.	92
4.1.5.4. Effect of mannitol.	95
4.1.5.5. Effect of salicylic acid	98
4.1.6. Extraction of cucurbitacins	101
4.1.6.1. Extraction methods	101
4.2. Large scale production of cucurbitacins using bioreactor	104
4.2.1. Batch fermentation using 0.3 vvm aeration rate	. 104
4.2.2 Batch fermentation using 0.6 vvm aeration rate	108
4.2.3 Comparison between 0.3 and 0.6 vvm aeration rate using	
batch fermentation.	113
4.3. Antimicrobial activity evaluation.	114
4.4. Biological activity of cucurbitacins	117
Chapter 5: Discussion	130
5.1. Effect of different growth regulators (auxins and cytokinins) in producti	on
of calli cultures from different explants of Ecballium elaterium	130
5.1.1. Seeds germination	130
5.1.2. Callus induction	130
5.1.2.1. Callus percentage formation	130
5.1.2.2. Callus fresh and dry weights	131
5.1.2.3. Regeneration via organogenesis from shoot tips	132
5.1.4. Effect of some growth regulators on production of cucurbitacin E and	I in
calli and regenerated shoot cultures	133
I. In calli cultures	133
II. In regenerated shoots	134

5.1.5. Effect of some precursors on enhancement and accumulation of	
cucurbitacin E and I	135
5.1.5.1. Effect of chitosan.	135
5.1.5.2. Effect of acetic acid	137
5.1.5.3. Effect of citric acid.	138
5.1.5.4. Effect of mannitol.	139
5.1.5.5. Effect of salicylic acid	140
5.1.6. Extraction of cucurbitacins	142
5.1.6.1. Extraction methods	142
5.2. Large scale production of cucurbitacins using bioreactor	143
5.2.1 Batch fermentation using 0.3 vvm aeration rate	143
5.2.2. Batch fermentation using 0.6 vvm aeration rate	145
5.2.3. Comparison between 0.3 and 0.6 vvm aeration rate using batch	
fermentation	146
5.3. Antimicrobial activity evaluation	147
5.4. Biological activity of cucurbitacins	148
Chapter 6: Summary	149
Chapter 7: References	153
Arabic Summary	