Retrospective Study on Discordance Between ER, PR, HER2 Receptors Before and After Neoadjuvant Chemotherapy in Locally Advanced Breast Cancer

Thesis

Submitted for Fulfillment of Masters Degree in Clinical Oncology and Nuclear Medicine

Presented By

Ahmed Nader El Guindy

Resident of Clinical Oncology, Faculty of Medicine, Ain Shams University

Under Supervision of

Professor Doctor Manal Moawad

Professor and Head of Department of Clinical Oncology Department-Faculty of Medicine, Ain Shams Unversity

Professor Doctor Khaled El Husseiny Nasr

Professor of Clinical Oncology, Faculty of Medicine, Ain Shams University

Doctor Doaa Atef Mohammed

Lecturer of Clinical Oncology, Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2018

سورة البقرة الآية: ٣٢

Acknowledgement

First and foremost I feel indebted for **Allah**, the most kind and most merciful.

I would like to express my respectful thanks and profound gratitude to **Prof. Dr. Manal Moawad,** professor & Head of Clinical Oncology & Nuclear Medicine – Faculty of Medicine – Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possibility of completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Khaled El****Busseiny, Professor of Clinical Oncology and Nuclear Medicine – Faculty of Medicine – Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful for **Dr. Doan Atef,** Lecturer of Clinical Oncology and Nuclear Medicine – Faculty of Medicine – Ain Shams University, for her great help, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least, I would like to thank all patients participated in this study.

Ahmed Nader

List of Contents

Title	Page No.
List of Abbreviations	i
List of Figures	v
List of Tables	vii
Introduction	1
Aim of the Work	7
Review of Literature	
Epidemiology	8
Pathological Classification	25
☐ Molecular Subtypes & Their Discordance in Breas	st Cancer 43
Diagnosis and Staging	56
Treatment of Locally Advanced Breast Cancer	75
Patients and Methods	99
Results	103
Discussion	130
Summary	143
References	
Arabic Summary	

List of Abbreviations

Abb.	Full term
5-FU	5-Fluorourgeil
	Adriamycin , Cyclophosphamide
	.Atypical Ductal Hyperplasia
	.German Gynecological Oncology Group
	.American Joint Committee on Cancer
	Atypical Lobular Hyperplasia
	Axillary Lymph Node Dissection
	.Androgen Receptor
ASCO	.American Society of Clinical Oncology
BC	.Breast Cancer
BCNF	.Breast Carcinoma with Neuroendocrine
	Features
BCS	.Breast Conserving Surgery
BCT	.Breast-Conserving Therapy
BI-RADS	.Breast Imaging Reporting and Data System
BMI	.Body Mass Index
CA15-3	.Cancer Antigen 15–3
<i>CAP</i>	. College of American Pathologists
carb	. Carboplatin
cDNA	. Complementary DNA
<i>CEA</i>	. Carcinoembryonic Antigen
<i>CEF</i> , <i>FEC</i>	.Cyclophosphamide, Epirubicin, and 5- fluorouracil
CI	. Confidence Interval
CIS	
CNB	Core Needle Biopsy
cT	.Clinical Tumor Size
D.M	.Diabetes Mellitus
DCIS	.Ductal Carcinoma in Situ

List of Abbreviations (cont...)

Abb.	Full term
DES	Diethylstilbestrol
	Disease-Free Survival
	Deoxyribonucleic Acid
	Early Breast Cancer Trialists' Collaborative Group
ER	Estrogen Receptor
etc	
<i>FAC</i>	5-Fluorouracil, Adriamycin , and Cyclophosphamide
FdUMP	5-Fluorodeoxyuridine Monophosphate
FISH	Florescence in Situ Hybridization
FNA	Fine Needle Aspirate
FNAC	Fine Needle Aspiration Cytology
<i>GEP</i>	Gene Expression Profile
HCV	Hepatitis C Virus
HER 2	Human Epidermal Growth Factor Receptor 2
HR	Hormonal Receptor
HRT	Hormonal Replacement Treatment
HTN	Hypertension
<i>IDC</i>	Invasive Ductal Carcinoma
<i>IHC</i>	Immunohistochemistry
<i>IHD</i>	Ischemic Heart Disease
<i>ILC</i>	Invasive Lobular Carcinoma
<i>IMPC</i>	Invasive Micropapillarycarcinoma
Ki67-LI	Ki67-Labeling Index
<i>LABC</i>	Locally Advanced Breast Cancer
<i>LBC-A</i>	$Luminal\ A$
<i>LBC-B</i>	Luminal B
<i>LN</i>	Lobular Neoplasia

List of Abbreviations (Cont...)

Abb.	Full term
LRC	Lipid-Rich Carcinoma
	Lympho Vascular Invasion
	Molecular Apocrine
	Metaplastic Breast Carcinoma
	Mucinous Breast Carcinoma
	Magnetic Resonance Imaging
<i>NCT</i>	Neoadjuvant Chemotherapy
<i>NE</i>	Neuroendocrine
<i>NEG</i>	Negative
NSABP	National Surgical Adjuvant Breast and Bowel Project
<i>NST</i>	No Specific Type
OC	Oral Contraceptive
<i>OS</i>	Overall Survival
PALB2	Partner and Localizer of BRCA2
pCR	Pathological Complete Response
<i>PET/CT</i>	$ Positron\ Emission\ Tomography \ /\ Computed$
	Tomography
<i>PLC</i>	Pleomorphic Lobular Carcinoma
PLCIS	Pleomorphic Lobular Carcinoma in Situ
<i>POS</i>	Positive
<i>PR</i>	Progesterone Receptor
<i>pT</i>	Pathological Tumor Size
<i>PTEN</i>	Phosphatase and Tensin Homolog
<i>RNA</i>	$Ribonucleic\ Acid$
<i>RS</i>	Recurrence Score Assay
STK11	Serine/Threonine Kinase 11
<i>TDLU</i>	Terminal Duct Lobular Unit
Tis	Tumor in situ

List of Abbreviations (cont...)

Abb.	Full term	
יייי	Thronia Vinne Inhibitan	
	Tyrosine Kinase Inhibitor	
<i>TMA</i>	Tissue Microarray	
<i>TN</i>	Triple Negative	
<i>TNM</i>	Tumor Node Metastatsis	
<i>TP 53</i>	Tumor Protein 53	
<i>TXT</i>	Taxotere	
<i>U.S</i>	United States	
<i>UICC</i>	Unio Internationalis Contra Cancrum	
<i>US</i>	Ultrasonography	
<i>VEGF</i>	Vascular Endothelial Growth Factor	
wb-MRI	Whole-Body Magnetic Resonance Imaging	
wPTX	Weekly Paclitaxel	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Estimated incidence, mortality prevalence of breast cancer work according to GLOBOCAN 2012	dwide
Figure (2):	Estimated incidence, mortality different types of cancer in according to GLOBOCAN 2012	Egypt
Figure (3):	Age-specific female breast of incidence & mortality rate	
Figure (4):	Female breast cancer incidence mortality rates by race and ethnic the U.S, 2008 – 2012	ity in
Figure (5):	Histological classification of breast c	
Figure (6):	Microscopic picture of invasive of carcinoma	
Figure (7):	Morphological characteristics of invlobular carcinoma and its variants	
Figure (8):	Mucinous carcinoma. Epithelial cells mild atypia floating in abut extracellular mucin	ndant
Figure (9):	Neuroendocrine carcinoma with alveolar pattern of distribution	
Figure (10):	Breast cancer classification according immunohistochemistry cellular material (IHC) or according to a combinate IHC and microarray expression methods.	arkers ion of
Figure (11):	Different views of breast cancer by M	IRI 59
Figure (12):	Menstrual status	104

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (13):	ER status	110
Figure (14):	PR Status.	
Figure (15):	HER2 status.	112
Figure (16):	Tumor size before and chemotherapy	
Figure (17):	T staging before and after chemother	rapy 118
Figure (18):	Post-operative N staging	119
Figure (19):	Range of discordance in ER receptor.	122
Figure (20):	Range of discordance in PR receptor.	123

List of Tables

Table No.	Title	Page No.
Table (1):	Factors That Increase the Relative Ris Breast Cancer in Women	
Table (2):	Classification of metaplastic carcinoma.	41
Table (3):	Surrogate definitions of intrinsic subtyphreast cancer according to the 2013St Consensus Conference	allen
Table (4):	Staging of breast cancer according to 7th edition	
Table (5):	TNM staging	73
Table (6):	NCCN Guidelines	80
Table (7):	Age of patients of samples study	103
Table (8):	Menstrual status	103
Table (9):	Personal and medical history	105
Table (10):	Initial TNM staging	107
Table (11):	Pathology	108
Table (12):	Tumor grade	108
Table (13):	Lympho vascular invasion	108
Table (14):	IHC before chemotherapy	109
Table (15):	IHC after chemotherapy	109
Table (16):	ER status	110
Table (17):	PR Status	111
Table (18):	HER2 status	112
Table (19):	Chemotherapy regimens gaven	113
Table (20):	Chemotherapy cycles	114

List of Cables (Cont...)

Table No.	Title	Page No.
Table (21):	Tumor size before and after chemothera	py 115
Table (22):	T staging before and after chemotherapy	y 117
Table (23):	Post-operative N staging	119
Table (24):	IHC status before and after chemothers patients	10
Table (25):	Range of discordance in ER receptor	122
Table (26):	Range of discordance in PR receptor	123
Table (27):	ER receptor status in patients	124
Table (28):	Precentage of ER receptor changes	125
Table (29):	HER2 status in patients	126
Table (30):	Percentage of HER2 changes	127
Table (31):	PR status in patients	128
Table (32):	Percentage of PR changes	129

ABSTRACT

A review of the literature revealed 32 relevant studies that investigated the concordance of the hormone receptors (ER and/or PR) and HER2 after NAC with or without trastuzumab. Discordance of the hormone receptor status was reported in four out of eight studies in 8-33% of the patients. About half of the studies that tested the ER and PR receptor status separately reported discordances of 2.5-17% and 5.9-51.7% respectively. Studies that concluded that ER and/or PR receptor remained stable after NAC were performed with evidently lower number of patients compared to studies that reported a change. Good concordance of the HER2 amplification tested with FISH was reported, although the HER2 expression measured with immunohistochemistry was more discordant. A switch to a negative HER2 receptor in up to 43% of the patients was reported when NAC was combined with trastuzumab.

The timing of the surgical resection of a breast cancer relative to the chemotherapy regimen needed to minimize metastatic recurrence depends upon the disease presentation and input from the patient. A reasonable, clear indication for neoadjuvant chemotherapy is the need to reduce tumor size in an effort to provide breast conservation as an option. A typical patient for this would be a woman with small to medium breast size with a relatively large cancer who would prefer breast conservation as an option. This down staging of tumor size to avoid a mastectomy has been well documented with long-term loco-regional recurrence and survival rates being similar to traditional adjuvant chemotherapy treatment.

Keywords: Vascular Endothelial Growth Factor - Unio Internationalis Contra Cancrum - Tumor Node Metastatsis

INTRODUCTION

In 2015, an estimated 231, 840 new cases of invasive breast Lancer would be diagnosed among women, as well as an estimated 60, 290 additional cases of in situ breast cancer. In 2015, approximately 40, 290 women were expected to die from breast cancer. Only lung cancer accounts for more cancer deaths in women. In 2015, about 2.350 men were diagnosed with breast cancer and 440 men would die from the disease (Area, 2015).

In Egypt, the estimated incidence rates of breast cancer among females in Lower, Middle, Upper Egypt are 33.8 %, 26.8 %, 38.7 % respectively (*Amal et al.*, 2014).

Various risk factors, for example, increasing age, early menarche, late menopause, nulliparity or first child birth after the age of 30 years, lack of breastfeeding, sedentary lifestyle, etc., have been proposed (Aich et al. 2016).

Hereditary Breast cancer, which is usually caused by a mutation in BRCA1 and BRCA2 genes, is responsible for 5% To 10% of all these cancer cases as well as 10% To 15% of ovarian cancer cases. This Type of breast cancer follows autosomal dominant pattern inheritance and tends to occur as an early onset, high intensity, and bilateral form of the disease (Mehrguo and Akouchekian, 2016).

Most of the breast malignancies are adenocarcinomas, which constitute more than 95% of breast cancers. Invasive ductal carcinoma (IDC) is the most common form of invasive breast cancer. It accounts for 55% of breast cancer incidence upon diagnosis. Breast carcinomas arise from the same segment of the terminal duct lobular unit (TDLU). The typing of invasive breast carcinoma and its histological variants is well established. In general, breast carcinoma is divided into ductal carcinoma in situ (DCIS) and IDC. DCIS is a noninvasive potentially malignant intraductal proliferation of epithelial cells that is confined to the ducts and lobules. Invasive or infiltrative carcinoma refers to malignant abnormal proliferation of neoplastic cells in the breast tissue, which has penetrated through the duct wall into stroma. Invasive carcinoma and carcinoma in situ were classified as ductal and lobular based on the site from which the tumor originated. Cancers originating from the ducts are known as ductal carcinomas, while those originating from the lobules are known as lobular carcinomas. However, it is now found that this sort of tumor growth variation is not related to the site or the cell of origin, but there could be differences in tumor cell biology: whether the tumor cells express E-cadherin or not (Makki, 2015).

Classical immunohistochemistry (IHC) markers such as ER, PR and HER2, together with traditional clinicopathological variables including, e.g., tumor size, tumor grade and nodal involvement, are conventionally used for patient prognosis and management (Dai et al., 2015).