Extent of Malnutrition in Egyptian Neonatal Intensive Care Unit

Thesis
Submitted for partial fulfillment of master degree in Pediatrics

Presented by **Ebtessam Farouk Abd Elbadieh**M.B.Bch, Cairo University

Under the supervision of:

Dr. Iman Fathy Iskander

Professor of Pediatrics Cairo University

Dr. Samar Mohamed Sabry

Assisstant Professor of Pediatrics Cairo University

Dr. Khalil Abd EL Khalek Mohamed

Lecturer of Pediatrics Cairo University

Faculty of Medicine Cairo University 2012

Acknowledgment

First and foremost, I'd like to thank god for his accommodation for me to finish this work.

I'd like to express my gratitude, appreciation and thank to my supervisor **Dr. Iman Fathy Iskander**, Professor of Pediatrics, Faculty of Medicine, Cairo University, for her sincere supervision, guideness and help throughout this work.

I'd like to express my deepest thanks and gratitude to **Dr. Samar Mohamed Sabry**, Assistant Professor of Pediatrics,

Faculity of Medicine, Cairo University, for her supervision,

advice and encouragement throughout this work.

Also I'd like to express deepest thank to **Dr. Khalil Abd El Khalek Mohamed** Lecturer of Pediatrics, Faculty of

Medicine, Cairo University, for his help throughout this work.

My special thanks to my family and my dear husband, for their care and love that can never be sufficiently acknowledged.

Abstract

Extrauterine growth restriction is an identifiable marker of severe nutritional deficit during the first weeks of life. Nutrition is becoming a key factor not only for the growth of the newborn infants during their hospital stay but also for their long well being.

The two strategies, aggressive early PN and minimal enteral nutrition should enhance the overall nutritional health of the preterm infants as evidenced by less postnatal weight loss, an earlier return to birth weight, and improved over all postnatal growth and outcome.

Key words:

Amino Acid - Blood Urea Nitrogen - Chloride .

List of Contents

Contents	Page Number
List of Tables	I
List of Figures	IV
List of Abbreviations	V
Introduction and Aim of the work	1
Chapter (I): Enteral Nutrition	4
Chapter (II): Parenteral Nutrition	41
Chapter (III): Extrauterine Growth Restriction	63
Patients and Methods	74
Results	77
Discussion	87
Conclusion	95
Recommendations	96
Summary	97
References	99
Arabic Summary	123

List of Tables

Table number	Subject	Page number
1	Consequences of suboptimal nutrient intake	5
2	Nutritional requirements for growing preterm and term infants	6
3	Partition of energy needs for growing premature infants	7
4	Daily trace element requirements	9
5	Daily vitamin requirement of preterm infants	13
6	Bioactive compounds in human milk	16
7	Guidelines for breastfeeding premature infants	17
8	Benefits of fortification of human milk for preterm infants	20
9	Changes in human milk composition with use of HMF	21
10	Guidelines for the use of human milk fortifier for preterm infants	22
11	Comparison of fortifiers for human milk	23
12	Protocol of minimal enteral nutrition (MEN)	27
13	Feeding practice guidelines for infants <750 g	29
14	Feeding practice guidelines for infants ≥750g - <1000 g	30
15	Feeding practice guidelines for infants ≥1000g<1500g	31
16	Composition of various milks	32
17	Guidelines for optimal storage and handling of expressed breast milk (EBM)	33

18	Methods of feeding of preterm infants	36
19	Evidence-based enteral nutrition	37
20	Monitoring of enteral nutrition for neonates in NICU	39
21	Indications of parenteral nutrition	42
22	Usual daily requirements of nutrients in TPN solutions for preterm and term Infants	43
23	Caloric densities of various macronutrients	45
24	Daily energy intake recommended for preterm infants	46
25	Recommendations for pediatric multiple vitamins	56
26	Indications for route of administration of TPN in newborn infants who require intensive care	58
27	Parameters to be monitored in infants on parenteral nutrition	60
28	Evidence-based parenteral nutrition	60
29	Demographic data of studied neonates	77
30	Characteristics of studied neonates	77
31	Epidemiological data of studied neonates	78
32	Weight and weight percentile on admission and on discharge/death of preterm and full term infants.	78
33	Type of milk for preterm and full term infants	80
34	Interruption of feeding of preterm and full term infants.	80
35	Feeding history of the preterm and full term infants.	81
36	Regaining admission weight for preterm and full term infants	82

37	Duration of regaining admission weight	82
38	Outcome of the preterm and full term infants.	82
39	Duration of stay of preterm and full term infants	83
40	The gestational age, weight on admission and on discharge of the improved infants (PT, FT).	83
41	Duration of admission and days to regain admission weight of the improved infants (PT, FT)	83
42	Weight percentiles on admission and on discharge /death in studied neonates.	84
43	Weight percentile on admission and on discharge of the improved preterm and full term infants.	85

List of Figures

Figure number	Figure 's Title	Page number
1	Feeding of infant using a gastric tube if they are unable to breast or bottle feed.	35
2	Weight percentile on admission and on discharge /death of the preterm infants	79
3	Weight percentile on admission and on discharge /death of the full term infants	79
4	Weight percentiles on admission and on discharge /death of the studied neonates	84
5	Weight percentile on admission and on discharge of the improved preterm infants	85
6	Weight percentile on admission and on discharge of the improved full term infants	86

List of Abbreviations

AA	Amino Acid
AAP	American Academy of Pediatrics
ALk phos	Alkaline Phosphatase
ARA	Arachidonic acid
BPD	Bronchopulmonary dysplasia
BUN	Blood Urea Nitrogen
Ca	Calcium
CL	Chloride
CLA	Conjugated linoleic acid
CLD	Chronic lung disease
CMV	Cytomegalovirus
CPAP	Continuous Positive Airway Pressure
CS	Caesarian section
DHA	Docosahexaenoic acid
EBM	Expressed breast milk
EGA	Estimated gestational age
EGF	Epidermal growth factor
EGR	Extrauterine growth restriction
EHMF	Enfamil Human Milk Fortifier
ELBW	Extremely low birth weight
Fe	Iron
FL	Fluoride
FT	Full term
FTF	Full term formula
GER	Gastroesophageal reflux
GI	Gastrointestinal
GRV	Gastric residual volume
HIV	Human immunodeficiency virus
HM	Human milk
HMF	Human milk fortifier
I	Iodide
Ig A	Immunoglobulin A
IGF	Insulin growth factor
IUGR	Intrauterine growth restriction
K	Potassium
LBW	Low birth weight
Lc-PUFAs	Long chain polyunsaturated fatty acids

LE Lipid emulsion LSRO Life Sciences Research Office MAS Meconium Aspiration Syndrome Mb Molybdenum MCT Medium chain triglycerides MEN Minimal Enteral Nutrition	
MAS Meconium Aspiration Syndrome Mb Molybdenum MCT Medium chain triglycerides	
Mb Molybdenum MCT Medium chain triglycerides	
MCT Medium chain triglycerides	
MCT Medium chain triglycerides MEN Minimal Enteral Nutrition	
MEN Minimal Enteral Nutrition	
WIEN William Enteral Nutrition	
MFGM Milk fat globule membrane	
Mg Magnesium	
MVI Multi vitamin infusion	
Na Sodium	
NAS National Academy of Sciences	
NEC Necrotizing enterocolitis	
NG Nasogastric	
NGF Nerve growth factor	
NICU Neonatal Intensive Care Unit	
NPO Nothing per os	
NVD Normal vaginal delivery	
OG Orogastric	
P Phosphorus	
PCVC Percutaneous venous catheters	
PN Parenteral Nutrition	
PO4 Phosphorus	
PPAR Peroxisome proliferators receptors	
PrHM Preterm Human Milk	
PT Preterm	
PTE Pediatric trace element	
PTF Preterm formula	
PUFAs Polyunsaturated fatty acids	
RDA Recommended daily allowance	
RDIs Recommended dietary intakes	
RDS Respiratory distress syndrome	
Se Selenium	
SHMF Similac Human Milk Fortifier	
SIMV Synchronized Intermittent Mandatory Ventilation	
SNC Similac Natural Care	
TPN Total parenteral nutrition	
Trig Triglycerides	
TTN Transient Tachypnea of newborn	
USA United States of America	

List of abbreviations

VLBW	Very low birth weight
VZIG	Varicella-zoster immunoglobulin
VZV	Varicella-zoster virus
WHO	World Health Organization
Zn	Zinc

Introduction

Nutritional practice varies dramatically among NICUs. In many institutions nutrition is introduced only gradually over the first weeks of life because of concerns of nutrient intolerance by the preterm or ill infants who are fed intravenously and the risk of necrotizing enterocolitis (NEC) in preterm infants who are fed enterally. Extrauterine growth restriction is a major clinical problem for prematurely born neonates especially those who are critically ill. Moreover malnutrition in the NICU remains common (**Thureen, 1999**).

There are numerous perceived risks to initiation of adequate nutritional support. Current nutritional support does not prevent extrauterine growth restriction and there is evidence that changes in nutritional support may have a positive influence on growth. These include early administration of intravenous amino acids and lipids, minimal enteral nutrition as well as supplementary formula and human milk (**Clark et al, 2003a**).

Child health and development are contingent on sound nutrition during the neonatal period. The nutritional needs of all infants include adequate intake of fluid and energy; a balance among proteins, carbohydrates, and fats; and proper vitamin and mineral intake. Preterm infants have similar nutritional requirements but demand more frequent assessment of nutritional health and ongoing adjustment of nutritional intake throughout the neonatal period to ensure appropriate growth and development. Evidence-based nursing practice calls for an update on the specific nutritional requirements of infants, special nutritional needs of preterm infants, and the most recent changes in the composition of infant formula (**Gregory**, 2005).

The nutritional assessment of newborns is a difficult but is a necessary task in the NICU, especially when dealing with preterm infants, since they are born before the somatic growth is completed with its deposition of nutrient as glycogen, proteins, fats, vitamins, microelements and minerals.

Overall growth is predominately monitored in infants by anthropometry, the measurement of body weight, length, head circumference and to a lesser extent skin fold thickness and arm circumference. Anthropometry is a rapid, inexpensive, and noninvasive means to monitor growth, detect growth abnormalities, and assess nutritional status in infant (Anderson, 2002).

Evidence-based practice guidelines are essential in managing critically ill infants. This might allow establishing a practical feeding guideline avoiding complications and making best use of available resources (Smith, 2005).

Aim of the work

The aim of this work was to assess the nutritional status of admitted newborns in the NICU (Abu Elrish Elmounira Hospital) and the extent of malnutrition in the neonatal intensive care unit by using the anthropometric measurements of the admitted newborn infants, in order to evaluate our practical feeding protocol in the NICU.

Chapter(I) Enteral Nutrition

Enteral Nutrition

Well infants of gestational age > 34 weeks are usually able to coordinate sucking, swallowing, and breathing, and so establish breast or bottle feeding. In less mature infants, oral feeding may not be safe or possible because of neurological immaturity or respiratory compromise (McGuire et al., 2004).

Premature birth is a major disruption at a time when the fetus should be growing rapidly, with all body systems maturing and the brain developing at its fastest rate. Premature infants are often subjected to additional metabolic stressors and have higher energy and nutrient requirements than full-term infants (**Bennett**, 2005). Growth patterns among premature infants also differ depending on gestational age, sex, weight, genetics, and coexisting morbidities. Definitions of "catch-up" growth vary, but it is generally considered to be achieved when the infant reaches between the fifth and 10th percentile on a standard growth chart (**Bennett**, 2005). Healthy premature infants typically demonstrate catch-up growth first in head circumference and then in weight and length (**Carlson**, 2005).

Many believe that the newborn was in a nil per os (NPO) state in utero since the majority of fetal nutrition is obtained from the placenta. While it is recognized that the fetus swallows amniotic fluid, few appreciate the metabolic significance of swallowed amniotic fluid to the developing fetal gut. In addition to swallowing up to 760 milliliters (mL) of amniotic fluid per day, the human fetus derives approximately 20 kilocalories per kilogram per day (kcal /kg /d) of energy from digestion of amniotic fluid substances. At birth, the newborn gut is an experienced organ that is physiologically active and primed for the activities of food assimilation. Putting the newborn on NPO creates an abnormal physiologic situation and predisposes the infant to the negative consequences of no enteral nutrition (Strodtbeck et al., 2003).