

Effect of Human Bone Marrow Derived Mesenchymal Stem Cells on Squamous Cell Carcinoma Cell Line

Thesis Submitted to the Faculty of Dentistry, Ain Shams University, In the Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy In Oral Pathology

By

Hala Ahmed Mohamed Elkammar

B. D. S (Ain Shams), M. D. Sc. (Ain Shams)
Assistant Lecturer of Oral Pathology
Faculty of Dentistry
Future University

Faculty of Dentistry Ain Shams University 2013

Supervisors

Dr. Mohamed Salah El-Din Ayoub

Professor and Head of Oral Pathology Department Faculty of Dentistry Ain Shams University

Dr. Nagwa Kamal El-Din Roshdy

Professor of Medical Biochemistry and Molecular Biology Faculty of Medicine Cairo University

Dr. Houry Moustafa Baghdadi

Assistant Professor of Oral Pathology Faculty of Dentistry Ain Shams University

Acknowledgment

I would like to convey my deep and sincere appreciation to Dr. Mohamed Salah El-Din Ahmed Ayoub, Professor and Head of Oral Pathology Department, Faculty of Dentistry, Ain-Shams University, as he has always been an idol, providing me with knowledge, supervision and support. Thank you Dr. Mohamed.

I would also like to put across my gratitude to **Dr**.

Nagwa Kamal El-Din Roshdy, Professor of

Medical Biochemistry and Molecular Biology,

Faculty of Medicine, Cairo University, who has

been a huge help and guide at all times. I really

appreciate your help Dr. Nagwa.

I would also like to express special thanks and recognition to *Dr. Houry Moustafa Baghdadi*,

Assistant Professor of Oral Pathology, Faculty of Dentistry, Ain Shams University, who has always been there, giving me continuous encouragement, exceptional assistance and support. Working with Dr. Houry has been a great pleasure. Thank you Dr. Houry.

I also owe the Oral Pathology Department,

Faculty of Dentistry, Ain Shams University a

great deal. All the members of this department are

very dear to me as they have all been very helpful

and understanding. Thank you.

Last but not least, I would like to thank Dr. Dina
Sabry, Assistant Professor of Medical
Biochemistry and Molecular Biology, Faculty of
Medicine, Cairo University, for her continuous
help and for introducing me to a field of science
that is new and interesting. Dr. Dina has been
very helpful and caring. I will always be grateful
for your help doctor.

Dedications

I am grateful to God for enabling me to finish this work and for blessing me with a supporting and caring family. May God bring you happiness and joy, always.

Table of Contents

	Page
List of Abbreviations	i
List of Figures	v
List of Tables	viii
Introduction	1
Review of Literature	4
Stem cells	4
Bone marrow stem cells	10
Mesenchymal stem cells	10
Squamous cell carcinoma	20
Survivin	24
Bcl 2	29
VEGF	32
Aim of the study	36
Material and methods	37
Isolation and propagation of human bone marrow (BM) - derived MSCs.	37
Propagation of HEp 2 cell line	41
Addition of MSCs conditioned medium to HEp 2 cells	44
Coculture of MSCs and HEp 2 cells	45
Addition of coculture conditioned medium to HEp2 cells	45
Quantitative Reverse Transcription Polymerase Chain Reaction	46
Cell Viability and Proliferation Assay	54
Assessment of results	58
Results	59
Real time RT-PCR	59

Survivin gene expression	59
Bcl2 gene expression	63
VEGF gene expression	67
Cell viability and Proliferation assay	71
Discussion	75
Conclusions	85
Recommendations	86
Summary	87
References	89
Arabic Summary	127

List of Figures

		Page
Fig. 1	Alternative models for stem cell deployment (A) obligatory (invariant) asymmetry (B) populational (stochastic) asymmetry	6
Fig. 2	Role of TFG-B in cell cycle progression	16
Fig. 3	Intrinsic and extrinsic pathways of apoptosis	22
Fig. 4	Akt signaling pathway	23
Fig. 5	Mechanism of TGF-β down regulation of Survivin	26
Fig. 6	Cell cycle checkpoints	28
Fig. 7	Different mechanisms of action of Survivin	28
Fig. 8	Model of apoptotic signals	31
Fig. 9	Tumor characteristics and VEGF expression	34
Fig. 10	Photomicrograph of MSCs isolated and propagated at third passage (200x magnification)	40
Fig. 11	Separation of mononuclear cell layer (MNC) by density-gradient centrifugation	40
Fig. 12	Flask containing HEp2 cell line	42
Fig. 13	Photomicrograph of HEp2 cells, cultured and expanded at 46 passages (200x magnification)	43

Fig. 14	Incubator	43
Fig. 15	Centrifuge	44
Fig. 16	Pipetting to disaggregate clumps	44
Fig. 17	Photomicrograph showing coculture of MSCs (A) and HEp2 (B) (200x magnification).	45
Fig. 18	Spectrophotometer	48
Fig. 19	Real time PCR machine	53
Fig. 20	Photomicrograph showing coculture of MSCs (A) and HEp2 (B) at 24 hours (200x magnification)	56
Fig. 21	Photomicrograph showing coculture of MSCs (A) and HEp2 (B) at 48 hours (200x magnification)	56
Fig. 22	Photomicrograph showing coculture of MSCs (A) and HEp2 (B) at 72 hours (200x magnification)	57
Fig. 23	Photomicrograph showing coculture of MSCs (A) and HEp2 (B) at 96 hours (200x magnification)	57
Fig. 24	Chart showing Survivin gene expression	61
Fig. 25	Histogram showing Survivin gene expression	61
Fig. 26	Chart showing Bcl2 gene expression	65
Fig. 27	Histogram showing Bcl2 gene expression	65
Fig. 28	Chart showing VEGF gene expression	69
Fig. 29	Histogram showing VEGF gene expression	69

Fig. 30	Chart showing proliferation	73
Fig. 31	Histogram showing proliferation	73

List of Tables

		Page
Table 1	Groups used in this study	42
Table 2	Primer sequence for Survivin, Bcl2, VEGF and GAPDH genes	49
Table 3	List of volumes of each component used	51
Table 4	Volume of each reagent	52
Table 5	Thermal cycling condition	52
Table 6	Descriptive analysis of Survivin gene expression PCR fold difference	60
Table 7	One Way ANOVA of Survivin gene expression	60
Table 8	Comparison of Survivin gene expression using Post Hoc test	62
Table 9	Descriptive analysis of Bcl2 gene expression PCR fold difference	64
Table 10	One Way ANOVA of Bcl2 gene expression	64
Table 11	Comparison of Bcl2 gene expression using Post Hoc test	66
Table 12	Descriptive analysis of VEGF gene expression PCR fold difference	68
Table 13	One Way ANOVA of VEGF gene expression	68
Table 14	Comparison of VEGF gene expression using Post Hoc test	70
Table 15	Descriptive analysis of proliferation	72
Table 16	One Way ANOVA of proliferation	72
Table 17	Comparison of proliferation using Post Hoc test	74

List of Abbreviations

APAF: Apoptotic protease activating factor

ATP: Adenosine triphosphate

Bcl2: Beta cell lymphoma 2

BIRC5: Baculoviral inhibitor of apoptosis repeat-containing 5

BM: Bone marrow

BMSCs: Bone marrow stem cells

bp: Base pair

CDE: Cell cycle-dependent element

cDNA: Complementary Deoxyribonucleic Acid

CFU-Fs: Colony forming unit fibroblasts

CHR: Cell cycle genes homology region

CPC: Chromosomal passenger complex

CT: Computed tomography

Ct: Cycle threshold

CTP: Cytidine triphosphate

CYT c: Cytochrome c

DEPC: Diethylpyrocarbonate

DMEM: Dulbecco's modified Eagle's medium

DNA: Deoxyribonucleic acid

DNase: Deoxyribonuclease

dNTP: Deoxynucleoside triphosphate

DPCs: Dental pulp cells

DR: Death receptor

dTTP: Deoxythymidine triphosphate

EDTA: Ethylene diamine tetraacetic acid

EMT: Epithelial to mesenchymal transition

ERK: Extracellular signal- regulated kinase

ESCs: Embryonic stem cells

FBS: Fetal bovine serum

FCM: Flow cytometry

FLK-1: Fetal Liver Kinase-1

GAPDH: Glyceraldehyde-3-phosphate dehydrogenase

GC: Number of G's and C's in the primer as a percentage of the total bases.

GTC: Guanidine thiocyanate

GTP: Guanosine triphosphate

HEp2: Human- epidermoid- laryngeal carcinoma

HEpG2: hepatocellular carcinoma cell line

HPRI: Human Placental Ribonuclease Inhibitor

HPV: Human papilloma virus

HSCs: Hematopoietic stem cells

IAP: Inhibitor of apoptosis

IFN-B: Interferon Beta

II-8: Interleukin-8

INCENP: Inner centromere protein

iPS: induced pluripotential stem cells

IκB: inhibitor of kappa B

KS: Kaposi's sarcoma

MAPK/ ERK: Ras-Raf-mitogen-activated protein kinase /extracellular

signal-regulated kinase

MAPK: Mitogen-activated protein kinase

MMLV: Moloney Murine Leukemia virus

MNC: Mononuclear cell layer

MOMP: Mitochondrial outer membrane permeabilization

MRI: Magnetic resonance imaging

mRNA: Messenger ribonucleic acid

MSCs: Mesenchymal stem cells

MTT: Mosmann's tetrazole test/ methyl thiazol tetrazolium

NF-κB: nuclear factor - kappa B

NK: Natural killer cells

PBS: Phosphate buffer saline

pH: Hydrogen ion concentration

PI3K: Phosphoinositide 3-kinase

QPCR: Quantitative polymerase chain reaction

QRT-PCR: Quantitative reverse transcription polymerase chain reaction.

Rb: Retinoblastoma

RING: Really Interesting New Gene

RNA: Ribonucleic acid

RNase: Ribonuclease

rpm: Rounds per minute

RQ: Relative quatitification

RT-PCR: Reverse transcription polymerase chain reaction

SCC: Squamous cell carcinoma

SCF: Stem cell factor

SH2: Src Homology 2

SH3: Src Homology 3

SHED: Stem Cells from Human Exfoliated Deciduous

SMAC/DIABLO: Second mitochondria-derived activator of caspase/direct

IAP binding protein with low pH

SPSS: Statistical Package for Social Science

T34A: Threonine to Alanine

TC: Therapeutic cloning

TGF-β: Transforming growth factor-beta

TNF-α: Tumor necrosis factor-alpha

TNM: Tumor size node metastasis

UADT: Upper aerodigestive tract

VCAM: Vascular cell adhesion molecule

VEGF: Vascular endothelial growth factor

Wnt: Wingless-type MMTV integration site family member

 β - ME: Beta-mercaptoethanol