SHAMS UNIVERSITY FACULTY OF ENGINEERING Automotive Engineering Department

Effect of Using Photo-Voltaic Cells for Range Extension of Series Electric Hybrid Vehicles

A Thesis submitted in partial fulfillment of the requirements of the degree

of Master of Science in Mechanical Engineering

(Automotive Engineering)

by

Eng. Montasser Ali Mostafa

Postgraduate Diploma in Mechanical Engineering

(Automotive Engineering Department)
Faculty of Engineering, Ain Shams, 2009.

Supervised By

Dr. Nabila Shawky Elnhas

Dr. Adham Mohamed Abdelkader

Cairo -(2015)

Statement

This thesis is submitted as a partial fulfillment of Master of Science in Mechanical Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Student name
Signature
Date

Researcher Data

Name : Montasser Ali Mostafa Khalil

Date of birth : 27 / 7 / 1981

Place of birth : Cairo

Last academic degree : Postgraduate diploma

Field of specialization : Automotive engineering

University issued the degree : Ain Shams University

Date of issued degree : 2009

Current job :Technical manager in AMK.plast Co.

SUMMARY

This research is directed to the utilization of the solar energy in the transportation section to replace nonrenewable sources of energy which are finite and their prices is in a continuous increase, in addition to the Environment that suffers from the concentration of CO, NO_X, noise and rising of temperature. Taking into consideration the capitals and industrial cities, where the pollution concentration reaches high percentage, limited average speed and long stopping time in traffics especially at rush hours. Electric vehicle with more advantages of no noise, no pollution, saving energy and reduce emissions is a good solution for both the environmental and the depletion of fossil fuels. The electric vehicle is the optimum solution for those areas. In general the EV range and speed were the main obstacle that faces this mean of transportation to be comparable with conventional vehicles which are driven by ICE. This is due to the limited energy stored in the batteries and the time needed to recharge the batteries.

Cairo as a big city with its crowded streets is a suitable environment for the target of this research. After determining the average vehicles speeds in different districts at different working days, the performance of a pre-chosen battery electric vehicle is studied in order to convert it to work as a hybrid solar vehicle to overcome the disadvantages of both electric and solar cars. The hybrid solar vehicle has two sources of power, It can be driven by PV output power or battery stored power independently, which greatly affects the vehicle range.

After the vehicle is practically converted to work as a solar hybrid electric car, some practical tests are done and the results are analyzed which proved its reliability as an in-city mean of transportation and this was confirmed by a road test.

Key words: Hybrid vehicles, Renewable energy, Photovoltaic, Battery electric vehicle range

Acknowledgment

Great thanks for God, my family, my friends and my professors in Ainshams University, faculty of engineering, automotive department, who gave me the faith to finish this thesis. Also big thanks for my supervisors Dr. Nabila Shawky Elnahas and Dr. Adham Mohamed Abdelkader for their great effort.

Contents

	Page
LIST OF FIGURES	1
LIST OF TABLES	3
LIST ABBREVIATIONS	4
CHAPTER 1: INTRODUCTION	6
1.1 Introduction	6
1.2 Research Objective	9
CHAPTER 2: LITERATURE REVIEW	10
2.1 Electric Vehicle (EV) History	10
2.2 Description of an Electric Vehicle	10
2.2.1 Description of Parts and their Functions	12
2.2.1.1 Potentiometer	12
2.2.1.2 Batteries	12
2.2.1.3 Dc Controller	12
2.2.1.4 Motor	12
2.2.2 Theory of Operation for EV	12
2.3 Hybrid Electric Vehicle (HEV)	13
2.3.1 Series Hybrid	16
2.3.2 Parallel Hybrid	16
2.3.3 Series Parallel Hybrid	18
2.4 Plug-In Hybrid Electric Vehicles (PHEV)	18
2.5 Battery Electric Vehicle	18
2.6 Series Hybrid Electric Vehicle	19
2.7 Aim of the Present Work	20
CHAPTER 3: PRACTICAL WORK	21
3.1 Introduction	21
3.2 Average Cruising Speed	21

3.3 The Electric Car	21
3.3.1 Specification of the Electric Car	21
3.4 Calculation of the Needed Power.	23
3.4.1 Aerodynamic Resistance	23
3.4.2 Rolling Resistance	23
3.5 Measurement of the Consumed Power.	24
3.6 The Solar Vehicle.	25
3.7 The Solar Energy.	26
3.7.1 PV Cells	27
3.8 Vehicle Conversion.	28
3.8.1 Solar Panels Frame	29
3.8.2 Charging Controller	31
3.8.3 Batteries	32
3.8.4 Hybrid Operation	32
3.9 The Road Test.	34
3.10 Batteries Charging and Discharging Test	35
3.10.1 Charging Process	37
3.10.2 Discharging Process	39
CHAPTER 4: RESULTS	43
4.1 Driving Cycle in a Light Traffic Area	43
4.2 Driving Cycle in a Medium Traffic Area	43
4.3 Alternator Performance	44
4.4 Road Test	45
4.5 Batteries	47
4.6 Environmental Impacts	48
CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK	50
5.1 Conclusions	50
5.2 Recommendations for Future Work.	50

References 52

LIST OF FIGURES

			Page
Figure	2.1 :	Main parts of an electric vehicle.	11

Figure	2.2 :	power train configuration for HEVs (a) series, (b) parallel, (c) Series parallel.	15
Figure 3	3.1 a:	Lateral dimensions of the electric vehicle.	22
Figure 3	3.1b :	frontal dimension of the EV	22
Figure	3.2 :	the power consumed by the electric motor at different speeds	24
Figure	3.3 :	conversion of sun light to electricity	27
Figure	3.4 :	solar panels on the vehicle top	28
Figure	3.5 :	Dimension of the solar panels frame.	29
Figure	3.6 :	Maximum deflection	30
Figure	3.7 :	Maximum stress	30
Figure	3.8 :	maximum and minimum safety factors	31
Figure	3.9 :	A DC generator is supported at the end of the vehicle	33
Figure 3	3.10 :	A typical application of ACS752.	34
Figure 3	3.11 :	integrated circuit used for current measurement	35
Figure 3	3.12:	A real picture shows the connection of the voltmeter used in the experiment.	36
Figure 3	3.13 :	variation of current during charging of SLA battery	37
Figure 3	3.14 :	variation of Volt during charging of SLA battery at different current rates	38
Figure 3	3.15 :	variation of current during charging of gel battery at different current rates	38
Figure 3	3.16 :	variation of Volt during charging of gel battery at different current rates	39
Figure 3	3.17 :	An actual picture for the used lamps in the process of discharging	40
Figure 3	3.18 :	Variation of volt under constant discharging current for SLA battery	40
Figure 3	3.19 :	Variation of volt under constant discharging current for gel battery	41
Figure 3	3.20 :	Power consumed by SLA battery during charging at	41
Figure	4.1 :	different current rates Driving cycle in a light traffic area	43
Figure	4.2 :	Driving cycle in a medium traffic area	44
Figure	4.3 :	Alternator performance	44

Figure 4.4: Time for constant speed trip

LIST OF TABLES

		Page
Table 2.1:	Fuel efficiency of conventional cars and HEV	14
Table 2.2:	Degrees of hybridization.	14
Table 3.3:	Energy consumed during charging and discharging	42
	processes	
Table 4.1:	The actual generated and consumed power	45
Table 4.2:	percentage of the generated power to the consumed	46
	power	
Table 4.3:	Efficiency of SLA and gel batteries under different current rates.	47

LIST OF ABBREVIATIONS

AC Alternating Current

A-Si Amorphous Silicon

AGM Absorbed Glass Mat

BEV Battery Electric Vehicle

CdTe Cadmium Telluride

CIS Copper Indium Diselenide

CIGS Copper Indium Gallium Diselenide

CO₂ Carbon Dioxide

DC Direct Current

DOE Department Of Energy

EM Electric Motor

EV Electric Vehicle

EVSE Electric Vehicle Supply Equipment

GaAs Gallium Arsenide

GM General Motors

HEV Hybrid Electric Vehicle

HSV Hybrid Solar Vehicle

ICE Internal Combustion Engine

NEV Neighborhood Electric Vehicle

NiCad Nickel Cadmium

PEV Plug-in Electric Vehicle

PHEV Plug-in Hybrid Electric Vehicle

PV PhotoVoltaic

PCU Power Conditioning Unit

SEV Solar Electric Vehicle

SLA Sealed Lead Acid

TWC Three Way Catalyst

TTWE Tank To Wheel Efficiency

VRLA Valve Regulating Lead Acid

V2G Vehicle to Grid

WTTE Well To Tank Efficiency

WSC World Solar Champion

CHAPTER 1

INTRODUCTION

1-1 Introduction

The demand for petroleum continues to increase whilst oil supplies remain limited. In the near future, conventional oil supplies will no longer be able to satisfy the global demands. The oil production will peak and then commence to decline. There is no certainty when the peaking will occur, but it has been forecasted that it could happen soon [1]. According to a report in 2006, 80 million barrels of petrol is used per day. The transportation sector consumes 66% of this petrol and the portion of the land transportation is 56% of this quantity [2]. Consuming this amount of fuel continues to aggravate the environmental issues. Consequently, when it comes to energy security and climate change concerns, cars and trucks are considered one of the principal problems. They consume relatively a big portion of the oil in the world and emit a large amount of toxic gases that affect both human and environment.

In response to the increase in the impacts of the vehicles on the environment and energy security, improving fuel efficiency can play a massive role. There are many techniques to improve the efficiency in vehicles. Over the past few decades, there has been significant development in automobile engine and body technology. Thus, there are few gains achieved in fuel economy through vehicle engine and body. The emissions that impacted health were mostly mitigated by the invention of the Three Way Catalyst (TWC), which successfully converts the harmful emissions to less harmful ones. But Depletion of fuel resources has been tried to overcome by using alternative fuels, like biomass-based (Methanol/Ethanol) or other fossil fuels (like the liquefaction of Coal) as a feedstock. These; however, have a limited capacity due to cost constraints,