Cairo University
Faculty of Veterinary Medicine
Department of Microbiology

Bacteriological studies on lactic acid bacteria in cultured fresh water fishes.

A Thesis presented by Taghrid Mohammed Nagib Abd El hakim

B. V. Sc. Faculty of veterinary medicine, Zagazig University 2007 M. V.Sc. Faculty of veterinary medicine, Zagazig University 2011

For the Degree of Ph.D. of Veterinary Medical Sciences, Microbiology (Bacteriology, Immunology and Mycology)

Under the supervision of
Professor Dr.
Nashwaa Abdelsalam Ezzeldien
Professor of Microbiology
Faculty of Veterinary Medicine, Cairo University

Dr. Ahmed S. M. Shehata

Assistant Professor of Microbiology
Faculty of Veterinary Medicine, Cairo University

Professor Dr.
Ahmed M. A. Ammar
Professor of Microbiology
Faculty of Veterinary Medicine, Zagazig University

Professor Dr.
Azza M. M. Abdel rahman
Professor of Fish Health
Central Lab for Aquaculture Research

2015

Cairo University

Faculty of Veterinary Medicine

Department of Microbiology

Under the supervision of

Professor Dr.

Nashwaa Abdelsalam Ezzeldien

Professor of Microbiology

Faculty of Veterinary Medicine, Cairo University

Dr.

Ahmed S. M. Shehata

Assistant Professor of Microbiology

Faculty of Veterinary Medicine, Cairo University

Professor Dr.

Ahmed M. A. Ammar

Professor of Microbiology

Faculty of Veterinary Medicine, Zagazig University

Professor Dr.

Azza M. M. Abdel rahman

Professor of Fish Health

Central Lab for Aquaculture Research

بسم الله الرحمن الرحيم

صدرة البقرة: أية ٣٢)

Name: Taghrid Mohammed Nagib Abd El hakim

Nationality: Egyptian

Date of birth: 13-10-1985.

Specialization: Microbiology.

Degree: PhD in Microbiology.

Title of thesis: Bacteriological studies on lactic acid bacteria in cultured fresh water

fishes.

Supervision:

-Professor Dr. Nashwaa Abdelsalam Ezzeldien Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University.

-Dr. Ahmed S. M. Shehata Assistant Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University.

-Professor Dr. Ahmed M. A. Ammar Professor of Microbiology, Faculty of Veterinary Medicine, Zagazig University.

-Professor Dr. Azza M. M. Abdel rahman Professor of Fish Health, Central Lab for Aquaculture Research.

Key Words: Aeromonas, Antimicrobial activity, Fish, Pseudomonas

Abstract: Fifty (50) Nile tilapia (*Orechromis niloticus*) and 50 Common carp (*Cyprinus carpio*) were screened for Lactic acid bacteria (LAB) using specific media. The Antibacterial activity of LAB was estimated against pathogenic bacteria (*Aeromonas cavie* and *Pseudomonas fluorescence*). The results indicated that the recovered LAB isolates from intestine of Nile tilapia and common carp were 13(26%) and 4(8%), respectively. The isolated species were *Lactococcus lactis*, *lactobacillus animalis*, *lactobacillus plantarum*, *lactobacillus fermentum* and *lactobacillus raffino lactis* recovered from Nile Tilapia intestine, whereas *Lactococcus lactis*, *Lactobacillus animalis*, *Lactobacillus acidophilus* were isolated from Common carp. LAB isolates had an antibacterial effect against *Pseudomonas fluorescence* and *Aeromonas cavie*.

Dedication

To

My Father,

My Mother,

My Brother,

My Sisters and

My Husband and lovely daughters.

ACKNOWLEDGMENT

Praise and thanks to ALLAH SUBHANHU WATALA the most merciful for guiding and assisting me with out whose mercy and guidance this work would neither has been started nor completed.

I would like to express my sincere and appreciation to supervisor of the present work Prof. Dr. Nashwaa Abdel Salam Ezz Eldien Prof. of Microbiology, Faculty of Veterinary Medicine, Cairo University, Prof. Dr. Ahmed Mohamed Ahmed Ammar Prof. of Microbiology Faculty of Veterinary Medicine Zagazig University, Dr. Ahmed Samir Assistant Prof. of Microbiology Faculty of Veterinary Medicine Cairo University Prof. Dr. Azza Mohammed Mohammed Abdel rahman Prof. of Fish Health, Central Lab for Aquaculture Research, suggesting the point of the study, kind care during the progress of this work, continuous encouragement, constructive criticism throughout the course of study and preparation of the manuscripts and finishing this work.

And also, I would like to express my sincere gratitude and appreciation to **Dr.**Ahmed Oraby Lecturer of Microbiology Faculty of Veterinary Medicine, Cairo University, for helping me in identification of bacteria using PCR.

Lastly, sincere thanks to staff members of Central Laboratory for Aquaculture Research, Abbasa, for great help during the work.

LIST OF CONTENTS

No.	Page
1- INTRODUCTION	1
2- REVIEW OF LITERATURE	5
2.1. Identification of lactobacillus.	7
2.2. Identification of LAB using PCR	8
2.3. Prevalence of lactobacillus.	10
2.4. Antagonistic effect of Lactobacillus.	12
2.5. Immunostimulantory effect of Lactic acid bacteria	17
2.6. Lactobacillus as probiotics	23
3- MATERIAL and METHODS	29
3.1- Materials	29
3.1.1- Fish	29
3.1.1.1- Fish for lactic acid bacteria isolation.	29
3.1.1.2- Fish for experimental study	29
3.1.1.2.1-Fish for pathogenecity of isolated lactococcus lactis and lactococcus lactis	lactobacillus
animalis	29
3.1.1.2.2-Fish for safety of isolated lactic acid bacteria	29
3.1.1.2.3-Fish for feeding experiment	29
3.1.2.Aquaria	30
3.1.3. Media	30
3.1.3.1-Media for isolation.	30
3.1.3.2- Media for biochemical reactions.	30
3.1.4-Reagents	31
3.1.5-Stains	32
3.1.6-Diagnostic discs.	32
3.1.7-Materials used for agglutination inhibition test	32
3.1.8-Materials used for polymerase chain reaction	33
3.1.8.1.Materials used in the extraction of DNA	33
3.1.8.2-Materials used for PCR The DNA template	34

3.1.8.3-Oligonucleotide primers used for amplification of the DNA recovered from
Lactococcus and Lactobacillus isolates
3.1.8.4-Buffers and reagents used for agarose gel electrophoresis
3.2- Methods37
3.2.1- Lactic acid bacteria isolation
3.2.2- Identification of lactic acid bacteria
3.2.3- Identification of <i>lactococcus sp.</i> and <i>lactobacillus sp.</i> by PCR
3.2.3-1- Extraction of DNA from <i>Lactococcus and Lactobacillus</i>
3.2.3.2- Estimation of purity and concentrating of the DNA
3.2.3.3- Uniplex-PCR for the detection of <i>Lactococcus lactis</i> using specific primers
(16srRNA)
3.2.3.4- Uniplex-PCR for the detection of Lactobacillus using specific primers
(16srRNA)
3.2.3.5Screening of PCR products by agarose gel electrophoresis
3.2.4Antibacterial activity of LAB in vitro
3.2.5Bacterial preparing for pathogenecity
3.2.6 pathogenecity of <i>lactococcus lactis</i> to <i>Oreochromis niloticus</i>
3.2.7- pathogenecity of lactobacillus animalis in Oreochromis niloticus
44
3.1.8-Safety of isolated lactic acid bacteria
3.2.9-Sensitivity test using Antibiogram discs
3.2.10-Bacterial preparing for experimental feeding
3.2.11.Diet preparation
3.2.12.Feeding experiment
3.2.13.Blood and serum sampling
3.2.14.Respiratory burst activity by measuring nitroblue titrazolium activity
(NBT)
3.2.15.Lysozyme activity
3.2.16.Agglutination inhibition test (antibody titer)
3.2.17.Total bacterial count of fish intestine

3.2.18.Aeromonus count of fish intestine
3.2.19.Pseudomonus count of fish intestine
3.2.20.Challenge test
3.2.21.Statistical analysis50
4- Results51
5- Discussion
7-Summary97
8-References100
9-Arabic summary1

LIST OF TABLES

No.	title	page
1	The sequence, specificities, the primer combination and the size and length of the amplified products.	35
2	Characterization of suspected Lactic Acid Bacteria	56
3	Prevalence of isolated LAB from freshwater fishes	57
4	The prevalence of isolated lactic acid bacilli	59
5	Inhibition zones (mm) due to antibacterial activity of Lactobacillus isolates against <i>Aeromonas cavie</i> and <i>Pseudomonas fluorescence</i>	63
6	Mortality rate due to pathogenecity test of <i>L. animals</i> injected IP in <i>O. niloticus</i>	65
7	Mortality rate due to pathogenicity of L. lactis injected IP in O. niloticus	67
8	Mortality rate due to Experimental infection of <i>lactobacillus</i> isolates injected IP with 0.3 ml of 15×10 ¹⁰ cells/ml saline in <i>O. niloticus</i>	69
9	Sensitivity of lactobacillus isolates to antibiograms	72
10	Effect of Lactobacillus supplemented diet on Respiratory brust of O. niloticus	73
11	Effect of Lactobacillus supplemented diet on lysozyme of <i>O. niloticus</i>	76
12	Mortality rate of <i>O. niloticus</i> fed Lactobacillus species supplemented diet for one month due to challenge via IP rout with $0.3\text{ml} \times 10^5$ of <i>A. cavie</i> and <i>P. fluorescence</i>	79
13	Showed end point of agglutination inhibition test antibody titer for <i>Pseudomonas fluorescence</i> after challenge test	81
14	End point of agglutination inhibition test (antibody titer) in <i>O. niloticus</i> fed for one month <i>against Aeromonus cav</i> ie after challenged the fish with it	82
15	Antibody titer for <i>Pseudomonas fluorescence</i> and <i>Aeromonus cavie</i> after challenge test	83

List of tables

16	Total bacterial, Aeromonus spp. and Pseudomonas spp. Count from	
	intestine taken after 30 days of experimental feeding	84

LIST OF FIGURES

No.	Title	page
	Prevalence of isolated LAB from freshwater fishes	58
1	Prevalence of Isolated LAB from freshwater fishes	38
	Showed the prevalence of each lactic acid bacilli species to all	
2	isolates	59
	Inhibition zones (mm) due to antibacterial activity of	
3	Lactobacillus isolates against <i>Aeromonas cavie</i> and	
	Pseudomonas fluorescence	64
4	Mortality rate due to pathogenecity test of <i>L. animals</i> injected	
	IP in O. niloticus	66
5	Mortality rate due to Pathogenicity test of <i>L. lactis</i> injected IP in	
3	O. niloticus	68
6	Experimental infection of <i>lactobacillus</i> isolates injected IP with	
	0.3 ml of 15×10 ¹⁰ cells/ml saline in <i>O. niloticus</i>	70
7	Effect of Lactobacillus supplemented diet on Respiratory brust	
	of O. niloticus during feeding period	74
8	Showed the comparison of respiratory activity in O. niloticus	
	due to feeding with diet supplemented with L. animals (T1), L.	
	lactis T2) and control (T3) during the same feeding	
	period	75
9	Effect of Lactobacillus supplemented diet on lysozyme of O.	
	niloticus	77
10	Showed the comparison of lysozyme activity in O. niloticus due	
	to feeding with diet supplemented with L. animals (T1), L.	
	lactis (T2) and control (T3) during the same feeding	
	period	77
11	Showed the mortality rate among treated fish after challenge	
	test	80

List of figures

12	Showed the relative percentage of survival among treated fish	
	after challenge test	80
13	Showed antibody titer for Pseudomonas fluorescence and	
	Aeromonus cavaei after challenge test	83
14	Showed total bacterial count from intestine taken after 30 days	
	of experimental feeding	85
15	Showed Aeromonus count from intestine taken after 30 days of	
	experimental feeding	85
16	Showed Pseudomonas count from intestine taken after 30 days	
	of experimental feeding	86

List of photos

LIST OF PHOTOS

No.	Title	Page
1	Showed Gram-positive bacilli single in arrangement under the oil	
	immersions lens (X 1000) and suspected Lactobacillus	53
	animalis	33
2	Showed Gram-positive cocci single and douple in arrangement	54
	under the oil immersion lens (X 1000) and suspected <i>Lactococcus</i>	
	lactis	
3	Showed Gram-positive short and long bacilli single, duple and	54
	short chine in arrangement under the oil immersion lens (X 1000)	
	and suspected Lactobacillus fermentum	
4	Showed Gram-positive bacilli single in arrangement under the oil	
	immersion lens (X 1000) and suspected Lactobacillus	55
	plantarum	33
5	Showed Gram-positive cocci, coccobacilli and bacilli single in	55
	arrangement under the oil immersion lens (X 1000) and suspected	
	Lactobacillus acidophilus	
6	Result of uniplex-PCR for the detection of Lactococcus lactis	
	using specific primers (16srRNA)	60
7	Result of uniplex-PCR for the detection of Lactobacillus using	
	specific primers (16srRNA)	<i>c</i> 1
		61
8	O. niloticus experimentally infected IP with dose of 0.3 ml of 10^{10}	
	cells/ml of <i>L. animalis</i> . Showed pale liver with hemorrhagic spots,	66
	the intestine filed with fluid	
9	O. niloticus fish experimentaly infected IP with a dose of 0.3 ml of	
	10 ¹⁰ cells/ml of <i>L.lactis</i> showed fried liver with enlarged gall	68
	bladder and the intestine filled with fluid	00

List of photos

10	O. niloticus fish experimentally infected IP with a dose of 0.3 ml of	
	10^{10} cells/ml of <i>L. lactis</i> showed slightly congestion on mouth and	70
	eye	, 0