

Ain Shams University
Faculty of Engineering
Electrical Power & Machines Department

Optimum Sizing and Operation of Energy Storage System for a Grid Connected Wind Energy System

M.Sc. Thesis

By Eng. Mahmoud Samir Mahmoud Hassan

Submitted in partial fulfillment of the requirements for the M.Sc. degree in Electrical Engineering

Supervised By

Prof. Dr. Hossam Eldin A. Talaat
Dr. Walid Atef Omran

Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University

Cairo 2016

Supervisors Committee

For the Thesis

Optimum Sizing and Operation of Energy Storage System for a Grid Connected Wind Energy System

By

Eng. Mahmoud Samir Mahmoud Hassan

A Thesis Submitted to the Faculty of Engineering Ain Shams University in partial fulfillments of the requirements for the M.Sc. Degree in Electrical Power and Machine Engineering

Approved by:

Name, Title and Affiliation

Signature

- Prof. Dr. Hossam Eldin A. Talaat
 Electrical Power and Machines Department
 Faculty of Engineering,
 Ain Shams University
- Dr. Walid Atef Omran
 Electrical Power and Machines Department
 Faculty of Engineering,
 Ain Shams University

Examiners Committee

For the Thesis

Optimum Sizing and Operation of Energy Storage System for a Grid Connected Wind Energy System

By

Eng. Mahmoud Samir Mahmoud Hassan

A Thesis Submitted to the Faculty of Engineering Ain Shams University in partial fulfillments of the requirements for the M.Sc. Degree in Electrical Power and Machine Engineering

Name, Title and Affiliation

Signature

- 1. Prof. Dr. Mohamed Galal Osman Electrical Engineering Department Faculty of Engineering Mansoura University
- 2. Prof. Dr. Hamdy Saleh Elgohary Electrical Power and Machines Department Faculty of Engineering Ain Shams University
- 3. Prof. Dr. Hossam Eldin A. Talaat Electrical Power and Machines Department Faculty of Engineering Ain Shams University

Statement

Statement

This Thesis is submitted to Ain Shams University in partial

fulfillment of the requirements of M.Sc. degree in Electrical

Engineering.

The included work in this thesis has been carried out by the author at

the department of electrical power and machines, Ain Shams

University. No part of this thesis has been submitted for a degree or a

qualification at any other university or institution.

Name: Mahmoud Samir Mahmoud Hassan

Signature:

Date:

/ / 2016

iv

Abstract

The installation of wind energy systems has gained a rapid development due to their positive environmental impacts. Over the past decades, the global installed capacity of wind energy systems has increased from 7.5 GW in 1997 to 369.5 GW in 2014.

One of the main shortcoming of wind energy systems is the intermittency of their output power that lead to power fluctuations over short periods of time. These fluctuations are considered the main barrier from dealing with these systems as dispatchable power sources. Moreover, they might lead to several technical issues, including voltage fluctuations at the point of common coupling and frequency deviations in microgrids operating in the islanded mode.

A possible solution to overcome the issue of power fluctuations from wind energy systems is the installation of Battery Energy Storage System (BESS). The proper operation of the BESS can lead to achieving the required dispatchability from the wind energy system over a specific period of time. However, the BESS contributes to a significant portion of the total cost of the system, and thus, a careful choice of its size is a must.

In this thesis, a new methodology is proposed to obtain the optimum size of a BESS that can limit the power fluctuations from a wind energy system. The main target of the methodology is to identify the size of the BESS that corresponds to the lowest cost. The function of this BESS is to allow the generation of a constant power

from the wind-BESS energy system during a minimum specified period. Moreover, the methodology attempts to extend the lifetime of the BESS by fully charging and discharging the battery during each cycle. In addition, the methodology is used to investigate the impact of the Depth of Discharge (DoD_{max}) on the cost, lifetime and operation of the BESS.

The proposed methodology is based on utilizing the historical wind speed data at the location of the wind energy system. The wind speed data is then converted to the corresponding electric output power using the wind turbine power curve. The optimum size is then identified by an iterative method which is based on choosing the generated power during the charging and discharging periods of the BESS. During the charging periods, the generated power from the system is chosen as the minimum value electrical power from the wind turbine during the charging period. On the other hand, during discharging periods, the generated power from the system is chosen to be the maximum value of the power from the wind turbine during the discharging period. To avoid the rapid changes in the output power and to improve the dispatchability of the system, the charging and discharging periods are not allowed to be less than a specified value (e.g., 30 minutes).

The proposed methodology is also implemented using the Genetic Algorithms technique and the results are compared to the iterative method. In addition, a multi-objective Genetic Algorithm is also used to find the optimum size of the BESS while minimizing the

cost and maximizing the charging and discharging times at the same time.

The modeling and simulation of the system is performed in the MATLAB environment and the sensitivity analysis is carried out by investigating the impact of different data patterns on the results.

Acknowledgement

First thank God for helping me to achieve completing this work.

I then wish to express my deep gratitude to **Professor.Dr. Hossam. E. A. Talaat** my research supervisor, for his patient guidance, theoretical advice, fruitful criticism enthusiastic encouragement and useful critiques of this research work.

I would also like to express my very great appreciation to **Dr. Walid Atef Omran** for his valuable and constructive suggestions during the study and research, for his patience, motivation, immense knowledge, and tutoring me how to think. His guidance helped me in all the time of research and writing of this thesis.

Finally, I am grateful for my parents and my wife, for their help and patient throughout all of this work. Thank you for supporting me in every way.

Mahmoud Samir Mahmoud Hassan Cairo, 2016

Table of Contents

Supervisors Committee	ii
Examiners Committee	iii
Statement	iv
Abstract	v
Acknowledgements	viii
Table of Contents	ix
List of Figures	xiii
List of Tables	xvi
List of Abbreviations	xvii
List of Symbols	I
Chapter 1 Introduction	1
1.1 General	1
1.2 Electrical Power Capacity in Egypt	3
1.2.1 Total power capacity in Egypt	3
1.2.2 Wind power capacity in Egypt	5
1.3 Variability of Wind Power	6
1.4 Research Objective	7
1.5 Thesis Organization	7
Chapter 2 Theoretical Background and Literature	9
2.1 General	9
2.2 Wind Turbine	9
2.3 Wind Turbine	10
2.3.1 Type A wind	10

2.3.2 Type B wind	11
2.3.3 Type C wind	12
2.3.4 Type D wind	13
2.4 Electrical Output Power from Wind Turbine Generators	14
2.5 Energy Storage Systems	15
2.5.1 Short term energy storage systems	16
2.5.2 Long term energy storage	17
2.6 Energy Storage Systems in Egypt	19
2.7 Literature	19
2.8 Summary	21
Chapter 3 A Heuristic Approach for Sizing the BESS with a	
Preselected DoDmax	22
3.1 General	22
3.2 Adopted System Configuration	22
3.3 Proposed Algorithm of Sizing the BESS with a Preselected	
DoDmax	23
3.4 Calculation of Charging and Discharging	28
3.4.1 Charging	28
3.4.2 Discharging period	29
3.5 System under Study	29
3.5.1 Wind turbine specification	29
3.5.2 BESS specifications	30
3.5.3 Cost analysis equations	31
3.5.4 Time constraint effect on the dispatchable power	33
3.6 Simulation Results	35

3.7 Summary	38
Chapter 4 A Heuristic Approach for Sizing the BESS with a	
Preselected DoDmax	39
4.1 General	39
4.2 Life Time of BESS and DoDmax	39
4.3 Sizing Algorithm of the BESS with Optimum DoDmax	40
4.4 Simulation Results	43
4.5 Different Data Sets	50
4.6 Results for the New Data Set	53
4.7 Sensitivity Analysis	56
4.8 Summary	63
Chapter 5 Sizing of BESS with an unknown DoDmax by using	
Genetic Algorithm	64
5.1 General	64
5.2 Application of GA for Sizing of BESS	64
5.3 Application of MATLAB GA Optimization Tool	66
5.4 Minimizing the Cost with Charging Time Constraint	70
5.4.1 General	70
5.4.2 Summary of Results	75
5.5 Sizing of BESS by using multi objective GA	76
5.5.1 General	76
5.5.2 Setting of multi objective GA	76
5.5.3 Results	77
5.6 Summary	80
Chapter 6 Conclusion	81

Table of Contents

6.1 General	81
6.2 Conclusion	81
6.3 Future	84
References	85
Appendix A	94
Appendix B	

List of Figures

Figure 1-1 Global installed wind capacity 1997-2014	1
Figure 1-2 LCOE and hub heights of wind turbine	2
Figure 1-3 Tower diameter obstacles	2
Figure 1-4 Blade length obstacle	3
Figure 1-5 Installed capacities percentages in 2014 [3]	4
Figure 1-6 Wind atlas for Egypt [4]	5
Figure 2-1 Wind turbine structure	10
Figure 2-2 Type A wind turbine	11
Figure 2-3 Type B wind turbine	12
Figure 2-4 Type C wind turbine	13
Figure 2-5 Type D wind turbine	14
Figure 2-6 Electrical characteristics of wind turbine	15
Figure 2-7 Classification of energy storage systems	16
Figure 2-8 Different technology of energy storage systems and life	
time	17
Figure 2-9 Rated power and energy for different energy storage	
systems	18
Figure 3-1 Wind energy system with BESS	23
Figure 3-2 Inputs and output of the proposed algorithm	25
Figure 3-3 (1/2) Proposed strategy for BESS charging and	
discharging	26
Figure 3-4 Wind turbine power speed characteristic	30
Figure 3-5 System configuration	32

Figure 3-6 Dispatchability for 50 kWh BESS34
Figure 3-7 Dispatchability for 100 kWh BESS35
Figure 3-8 Cost of BESS vs. size of BESS36
Figure 3-9 Dispatchable power for optimal BESS size37
Figure 3-10 SoC of the BESS during a sample period
Figure 4-1 Problem Formulation for different DoDmax patterns41
Figure 4-2 (1/2) Proposed strategy for BESS charging and
discharging42
Figure 4-3 Annual cost results in (\$)
Figure 4-4 Minimum charging/discharging time in (minutes)45
Figure 4-5 Dispatchable power for optimal BESS size46
Figure 4-6 SoC of the BESS during a sample period46
Figure 4-7 Minimum charging/discharging time vs. TAC of BESS for
original data set
Figure 4-8 Minimum charging/discharging time vs. TAC of BESS for
different order data set51
Figure 4-9 Minimum charging/discharging time vs. TAC of BESS for
the new data set
Figure 4-10 Comparison between original, shuffled and new data56
Figure 4-11 Different historical data sets vs. TAC61
Figure 4-12 Different historical data sets vs. Number of cycles61
Figure 4-13 Different historical data sets vs. Deviation percentage in
time %
Figure 4-14 Different historical data sets vs. Deviation percentage in
DoDmax

Figure 5-1 Adopted Algorithm flow chart	66
Figure 5-2 MATLAB global optimization	70
Figure 5-3 Population size scenarios	72
Figure 5-4 Progress of optimization procedure for population size = 5	5
	73
Figure 5-5 Progress of optimization procedure for population size =	
10	73
Figure 5-6 Progress of optimization procedure for population size =	
20	74
Figure 5-7 Progress of optimization procedure for population size =	
40	74
Figure 5-8 Population Size	75
Figure 5-9 Final optimization toolbox result	75
Figure 5-10 Minimum charging/discharging time of BESS vs. TAC	79
Figure (A-1) Mechanical power coefficient	86
Figure (A-2) Mechanical output power from wind turbine	87
Figure (A-3) Electrical wind power vs. wind speed k=1	89
Figure (A-4) Electrical wind power vs. wind speed k=2	90