

Practical Applications for Some Solvents as A Protecting Agent in Human Embryos Freezing Procedure during Assisted Reproductive Technology

A thesis submitted for the fulfillment of Master Degree of Science in Analytical Chemistry

BY

Norhan M.S.H. El. Saadany

B. Sc. Of Biochemistry and Chemistry (2003)
Faculty of Science
Ain shams University

Practical Applications for Some Solvents as A Protecting Agent in Human Embryos Freezing Procedure during Assisted Reproductive Technology

BY

Norhan M. S. El. Saadany

B. Sc. Of Biochemistry and Chemistry (2003)

This thesis submitted for the fulfillment of Master Degree of Science in Analytical Chemistry and has been approved by:

Prof. Dr. Mostafa M. H. Khalil

Professor of Analytical Chemistry Inorganic and Analytical Chemistry Department Faculty of science, Ain shams University

Prof. Dr. Mohamed M. Farrag ...

Professor and Chairman of Obstetrics and Gynecology Department, Director of IVF Unit Faculty of Medicine, Suez Canal University

Date of examination: 19/7/2012

Head of Chemistry Department **Prof. Dr. Maged Shafik Antonious Nakhla**

This thesis has not been previously submitted for any degree at this or any other university.

Norhan Mohamed Salah El. Dein Hussin El. Saadany

Acknowledgement

First of all, great thanks and praise to *Allah* for giving me prosperity and strength to fulfill this work. Deep gratitude and special thanks are devoted to my dear husband Dr. Mohamed El Aily for his patience, care and support.

All appreciation and dept are to *Prof. Dr. Mostafa Mohamed Hassan Khalil*; Professor of Analytical Chemistry, Inorganic and Analytical Chemistry Department, Faculty of science, Ain shams University, for his valuable supervising, encouragement and sincere help through all stages of the study.

All gratitude and thanks are to *Prof. Dr. Mohamed M. Farrag*; Professor and Chairman of Obstetrics and Gynecology Department, Director of IVF Unit, Faculty of Medicine, Suez Canal University, for his much appreciated supervising, effective guidance, offering facilities and fruitful discussions in all steps of this study.

Special gratitude and acknowledgement are for *Dr. Waleed Ali Sayed Ahmad* for following up the details and his great help during the experimental work.

Special gratitude and acknowledgement are for *Dr. Elham Hussien Madany* for her great guidance, support and help during the all stages of this work.

Many thanks are to the Chairman, Professors, doctors and staff members of Chemistry Department, Faculty of Science, Ain Shams University, and faculty of medicine, Suez Canal University

Contents

	Title	Page
	List of figures List of tables Nomenclature Abstract	i iii iv v
	Chapter I	
I. I.1.	Introduction and Review of Literatures Infertility	1 1
I.2.	Assisted Reproductive Technology (ART)	4
I.3.	Embryo Freezing (Cryopreservation)	4
I.3.a.	Basics of cryobiology and cryopreservation	6
I.3.a.i.	Extra and Intracellular water	7
I.3.a.ii.	Water, ice and physical changes within cryopreservation	9
I.3.a.iii.	Ice dynamics in pure water:	9
I.3.a.iv.	Ice dynamics in cells or aqueous solutions contains solutes	12
I.3.a.v.	Intracellular water behavior during cryopreservation	16
I.3.a.vi. I.3.a.vii. I.3.a.viii.	Cryoinjury and its Prevention Mechanisms of Cryoinjury Osmotic Tolerance	20 22 24
I.3.a.ix.	Cryoinjury by Eutectic Formation	24
I.3.a.x.	Cellular Cryoinjury of Gametes	25
I.3.a.xi.	Mechanisms of Cryoprotectant Action	27
I.3.b.	Methods of cryopreservation	30
I.3.b.i.	Slow Freezing	30
I.3.b.ii.	Vitrification	32
I.3.b.iii.	Comparison between Vitrification and Slow Freezing	32

I.3.b.iv.	Thawing Procedures (Warming)	35
I.3.c.	Cryopreservation devices (Cryo-devices):	35
I.3.c.i.	Cryotip	36
I.3.c.ii.	Cryotop	36
I.3.c.iii.	Cryoleaf	37
I.3.c.iv.	Cryoloop	37
I.3.c.v.	Rapid-i	37
I.3.c.vi.	High Security Vitrification straw (HSV)	38
I.3.d.	Cryopreservation Media	40
	Chapter II	
II.	Experimental Work	44
II.1.	ART Procedure	44
II.2.	Vitrification procedure	50
II.3.	Thawing procedure:	59
	Chapter III	
III.	Results and Discussion	62
III.1.	Results of the experimental work	62
III.2.	Chemical Illustration for the results	69
III.2.a.	CPA mode of action	73
III.2.a.i.	POH mode of action	75
III.2.a.ii.	DMSO mode of action	77
III.3.	Recommendation for further researches	82
	Conclusion	85
	References	88
	Summary	I
	Arabic Summary	III

List of figures

Figure	Description	Page
Figure 1	Intra Cytoplasmic Sperm Injection (ICSI)	3
Figure 2	procedure. Computerized programming controlled freezer for embryos slow freezing technique.	31
Figure 3	Different cryo-devices.	39
Figure 4	Stereomicroscope Olympus SZ40.	47
Figure 5	Oocytes obtained from OPU operation.	47
Figure 6	Sperms.	48
Figure 7	2PN stage of embryo that reflects the successful fertilization.	48
Figure 8	Different stages of human embryos growth.	49
Figure 9	Human embryos prior vitrification.	52
Figure 10	Loading the embryos close to the gutter end in a miniscule volume of the vitrification solution.	53
Figure 11	Sealing the open end of the outer protective straw using the heat sealer.	53
Figure 12	Identification and storage of straws containing vitrified embryos.	55
Figure 13	Transferring the straws containing the vitrified embryos into liquid nitrogen tanks.	56
Figure 14	Liquid nitrogen tanks for vitrified embryos storage.	56
Figure 15	Internal structure of LN ₂ tank.	57
Figure 16	Coded canes placed in LN ₂ tank canisters.	57
Figure 17	Measuring LN_2 level in storage tank.	58
Figure 18	On the right side, survived embryo after thawing and on the left side, embryo that was not survived after thawing.	61
Figure 19	The comparison between DMSO and POH groups regarding the survival rate.	65

Figure 20	The Comparison of the POH group and DMSO group according to the embryo stage.	68
Figure 21	Cell membrane structure.	70
Figure 22	Resonance in protein structure.	70
Figure 23	Intracellular water molecules maintain the biochemical protein structure.	72
Figure 24	The side-chain carboxylic groups in proteins.	72
Figure 25	CPA molecules replacing intracellular water molecules maintaining the in intracellular chemical structure.	74
Figure 26	1,2 Propandiol (POH).	76
Figure 27	Intracellular mode of action of POH as a CPA.	76
Figure 28	POH molecules blocking their active site by forming H-bond with each others.	76
Figure 29	Dimethylsulphoxide (DMSO).	78
Figure 30	Intracellular mode of action of DMSO as a CPA	78

List of tables

Table	Description	Page
Table 1	Comparison between slow freezing and vitrification techniques.	33
Table 2	The chemical components of vitrification media.	52
Table 3	Chemical components of the thawing media.	61
Table 4	The significance of differences between group A (DMSO) and B (POH).	64
Table 5	The comparison between DMSO and POH groups regarding the survival rate.	64
Table 6	Comparison of means (ANOVA) between the number of survived embryos and different factors in DMSO group.	66
Table 7	Comparison of means (ANOVA) between the number of survived embryos and different factors in POH group.	66
Table 8	The Comparison of the POH group and DMSO group according to the embryo stage.	68
Table 9	Different CPAs' dielectric constant.	79
Table 10	A comparison between DMSO and POH as CPAs.	81
Table 11	New recommended CPAs with high dielectric-constant, low molecular-weight.	83
Table 12	Methoxylated derivatives of the convenient CPAs shows reduced self-interaction and greater oil miscibility.	83

Nomenclature

ANOVA Analysis Of Variance

ART Assisted Reproductive Technology

CPA Cryoprotective Additive

DMSO Dimethylsulfoxide

DSC Differential Scanning Calorimeter

ES Equilibrium Solution

ET Embryo Transfer

FSH Follicular Stimulating Hormone

F-test Fisher test (ANOVA F-test)

HCG Human Chorionic Gonadotropin hormone

HSV High Security Vitrification Straw

ICSI Intracytoplasmic Sperm Injection

IVF In Vitro Fertilization

IUI Intrauterine Insemination

LH Luteinizing Hormone

LN₂ Liquid Nitrogen

OPU Ovum Pick Up

POH 1, 2 Propandiol

P- Value Probability value

TB Testicular Biopsy

VS Vitrification Solution

WHO World Health Organization

Abstract

Name: Norhan Mohamed Salah el. Dien Hussin El. Saadany Title: Practical Applications for Some Solvents as A Protecting Agent in Human Embryos Freezing Procedure during Assisted Reproductive Technology.

The study is to assess the mode of action of some solvents as protecting agent during human embryos freezina (cryopreservation, vitrification). Survival rate of human embryos had been assessed after vitrification process using two different freezing (vitrification) media with two different solvents; Dimethylsulfoxide (DMSO) based medium and 1, 2 Propandiol (PROH) based medium. This two solvents act as cryoprotective additives (CPA) that provide a protective effect for human embryos vitrification. Day2 or day3 divided human embryos were exposed to DMSO or PROH based medium before plunging into Liquid Nitrogen (LN₂) for long term storage. 212 embryos in vitrification process were split into two groups. Group A (114 embryos) were vitrified using sequential vitrification medium based on DMSO and Group B (98 embryos) were vitrified using sequential vitrification medium based on PROH. In the Warming procedure (Thawing) embryos of the group A and B were thawed respectively. Thawed embryos were transferred to physiological media designed for cleavage stage embryos and kept in the CO2 incubator for 2 to 8 hours. The survival rate of embryos was evaluated. After vitrification/thawing procedure, the survival rates of group A (DMSO) and group B (PROH) were 85 survived embryos of 114 (74.6%) and 52 survived embryos of 98 (52%) respectively (P.value<0.05). DMSO based medium used for vitrification/thaw process of day 2 or day 3 divided embryos demonstrated a significant higher embryo survival rate than that of PROH based vitrification medium. Results had been analyzed chemically to illustrate the mode of action of DMSO and POH and to explain the superiority of DMSO over POH.

Keywords:

Embryo cryopreservation, Vitrification, Dimethylsulfoxide; DMSO; 1,2-Propandiol; POH;.

CHAPTER I INTRODUCTION AND REVIEW OF LITERATURE S

I. Introduction and Review of Literatures

I.1. Infertility

There is no standard definition of infertility but biologically, inability of a couple to conceive and produce a live birth can be classified as infertility [Healy, Trounson and Andersen; 1994]. During their reproductive lives, 10% to 15% of couples are unable to achieve conception and deliver a living child after 1 year of unprotected coitus [Healy DL, et al; 1994 & Speroff, Glass and Kase; 1999].

Indications for early referral to a specialist fertility clinic can be summarized as:

- 1. Duration of infertility > 3 years.
- 2. Woman's age > 38 years.
- 3. Follicle stimulating hormone (FSH) concentration in early follicular phase > 10 IU/I.
- Luteinising hormone (LH) concentration in early follicular phase > 10 IU/I.
- Abnormal seminal fluid analysis as described by World Health Organization (WHO) 1999, Sperm count < 20×10⁶/ml, Sperm motility < 50% motile, < 25%