Role of MRI in Assessment of hydrocephalus in Pediatric Patients

Essay, submitted for partial fulfillment of the master degree in radiodiagnosis

By

Ibraheim Ramadan Mohamed El Nouby

(MB.B.Ch)

Faculty of medicine-Ain Shams University

Supervised by

Prof. Dr. Salwa Taha Ismaeil

Prof. of Radiodiagnosis

Faculty of medicine-Ain Shams University

Dr. Eman Ahmed Shawky Genedi

Assistant prof. of Radiodiagnosis

Faculty of medicine-Ain Shams University

Diagnostic Radiology Department
Faculty of medicine
Ain Shams University
2010

Role of MRI in Assessment of hydrocephalus in Pediatric Patients

Dr. Ibraheim Ramadan Mohamed El Nouby

Abstract

- Hydrocephalus can be defined broadly as a disturbance of formation, flow or absorption of CSF that leads to an increase in volume of fluid in the CNS. Acute hydrocephalus occurs over days, sub acute over weeks and chronic over months or years. Hyperproduction of CSF is seen only in secondary hydrocephalus in patients with papillomas of the choroid plexus. In the rest of cases, hydrocephalus is usually a result of impaired resorption of CSF, or may due to blockage of CSF pathways. On the one hand, decrease of resorption may be a result of blockage of arachnoid vili.
- The average volumes of CSF are 90 mL in children 4 to 13 years old and 150 mL in adults. The rate of formation is approximately 0.35 mL/min or 500 mL/day. Normal pressure ranges from 10 to 100 mm H20 in young children, 60 to 200 mm H20 after eight years of age, and up to 250 mm H20 in obese patients. 80% of CSF enters directly into the cisternal system with subsequent drainage from the cerebral subarachnoid space into the cortical venous system; 20% circulates into the subarachnoid space of the spinal cord.

• Criteria for hydrocephalus in MRI:

Temporal horns are greater than 2 mm; transependymal absorption is translated on images as periventricular hyperintensities representing priventricular edema, ballooning of frontal horns of lateral ventricles and third ventricle (i.e., "Mickey mouse" ventricles). Upward bowing of the corpus callosum on sagittal MRI.

• MRI can also evaluate for Chiari malformation or cerebellar or periaqueductal tumors. It affords better imaging of the posterior fossa than CT and check for flow voids in the ventricle and cerebral aqueduct. Flow void in cerebral aqueduct based on (T2 and proton density MRI analysis) is diagnostic for hydrocephalus and its reduction after ventriculo-peritoneal shunt correlated with neurological improvement.

- Unlike CT cisternography, MR Ventriclography and MR Cisternography do
 not have the problems related to radiation. Although radionuclide
 cisternography has a lower radiation exposure, MR Ventriclography
 determining the functional status of third ventriculostomies, assessing
 communication between cysts and the ventricles and in determining the site of
 CSF block in noncommunicating hydrocephalus.
- Cine PC MR imaging is a reliable method for evaluating the patency of a third ventriculostomy. Minor flow in the third ventricle should be considered an early sign of obstruction. It is possible that CSF flow studies may detect obstruction before symptom recurrence or clinical deterioration.
- Cine MR CSF flow studies are indicated whenever it is necessary to evaluate the flow of CSF, rule out an obstruction in the CSF pathway, evaluate CSF flow around Chiari I and II malformations, evaluate spinal canal stenosis, evaluate postoperative decompressive procedures on the spine and brain, and evaluate third ventriculostomy. Therefor pathological CSF flow dynamics in the obstructive and non-obstructive hydrocephalus have been extensively analyzed using phase-contrast MR imaging.

Acknowledgement

First of all, thanks to ALLAH for everything in my life.

I would like to express my deep thanks to **Dr. Salwa Taha Ismaeil;** Professor of Diagnostic Radiology- Faculty Of Medicine-Ain Shams University for her valuable time, for her precious scientific advice, and her support.

My great gratitude to **Dr. Eman Ahmed Shawky Genedi** assistant prof. of Diagnostic Radiology- Faculty of Medicine-Ain Shams University for her valuable time, her kindness and support.

I would also thank my family for their encouragement and support.

I am also thankful to all people who helped me, my colleagues, and employees in general Suez hospital radiology department.

Ibraheim Ramadan

Content

1. Introduction and Aim of the work1
2MRI Anatomy of ventricular system4
3. Cerebrospinal fluid physiology10
4. Pathology of hydrocephalus in pediatric age group-
14
5. Quantitative measurement of C.S.F flow imaging
with cine phase contrast MR imaging36
6. MRI manifestation of hydrocephalus53
7. Summary and conclusion96
8. References98
9. Arabic summary105

List of Abbreviations

ACC	Agenesis of corpus callosum
CNS	Central nervous system
CSF	Cerebrospinal fluid
CSFV	Cerebrospinal fluid void
CT	Computed Tomography
CTC	Computed Tomography cisternography
CTVG	Computed Tomography Ventriclography
ETV	Endoscopic third ventriculostomy
FLAIR	fluid attenuation
FV	Forth ventricle
Hz	Hertz
IVH	Intra ventricular haemorrhage
IVOH	Intra-ventricular obstructive hydrocephalus.
LV	Lateral ventricle
MCM	Mega Cisterna Magna
M.R.I	Magnetic resonance imaging
NF	Neurofibromatosis
PC	Phase contrast
PCMRI	Phased contrast magnetic resonance imaging

ROI	Region of interest
SV	Spontaneous ventriculostomy
SAS	Subarachnoid space
T	Tesla
TV	Third ventricle
TE	Time of echo
TR	Time of repetition
2D	Tow dimension
TS	Tuberous sclerosis
TSC	Tuberous sclerosis complex
VGAM	Vein of Galen Malformation
Venc	Velocity encoding
WI	Weighted image

List of Figures

Fig (1) Axial T2 WI MRI shows lateral ventricle4
Fig (2) Axial T2 WI MRI shows body of lateral ventricle5
Fig (3) Axial T2 WI MRI shows third ventricle6
Fig (4) Axial T2 WI MRI shows forth ventricle7
Fig (5) Sagittal T2 WI MRI Shows CSF cistern8
Fig (6) Graph showing CSF circulation9
Fig (7) Graph showing the double-layered cranial dura mater12
Fig (8) Diagram shows CSF circulation13
Fig (9) Axial T2 MRI shows dilated third & lateral ventricles17
Fig (10 A&B) T1-weighted post-gadolinium Sequence showing Choroid plexus papilloma of the third ventricle18
Fig (11) Sagittal T1 WI MRI showing Chiari type I malformation and syringomyelia19
Fig (12) Sagittal T1-weighted MR image revealing the peglike appearance of the vermis20
Fig (13 A) Mid sagital T2 MRI showing Chiari III Malformation21
Fig (13 B) Axial T1-weighted MRI showing Chiari III Malformation21
Fig (14) Axial T2-weighted MRI image showing outlines the herniating brain tissue and CSF (encephalocele)22

Fig (15) Axial T2-weighted MRI shows hydrocephalus in Dandy-Walker malformation,23
Fig (16) Sagittal T2WI MR shows aqueductal stenosis25
Fig (17) coronal T2-weighted MRI image showing bilateral tubers26
Fig (18) Axial TIWI MR shows a unilateral closed-lip schizencephaly 27
Fig (19) Axial T2-weighted MR image shows bilateral open lip schizencephaly27
Fig (20) T2-weighted image shows a smooth outer cortical layer. (lissencephally)28
Fig (21) Axial T2 weighted MRI image showing Pachygyria29
Fig (22) Sagittal T1-weighted MRI of the brain shows the normal appearance of the corpus callosum30
Fig (23) Sagittal T1-weighted MRI of the brain shows complete absence of the corpus callosum30
Fig (24 A) Noncontrast T1- weighted image shows slightly hypointense mass32
Fig (24 B) T2-weighted image shows the mass to be hyperintense.
Fig (25) Contrast-enhanced sagittal T1-weighted image shows intense and homogeneous enhancement in the mass33
Fig (26) Axial T2-weighted MR image showing hypoplastic cerebellum34
Fig (27 a) Sagittal T1-weighted MR image shows cystic mass in a supracerebellar location35

Fig (27 b) Lateral MR Venogram shows numerous dilated arteries and drainage of the large vein of Galen malformation35
Fig (28) Axial T2WI at level of lateral ventricle37
Fig (29) Axial T2WI at level of third ventricle37
Fig (30) Diagram shows neurocrainum axial sequence38
Fig (31) Axial T1WI at level of third ventricle39
Fig (32) Diagram shows neurocrainum coronal sequence40
Fig (33) Coronal T2WI at level of third ventricle40
Fig (34) Diagram shows neurocrainum sagittal sequence41
Fig (35) Sagittal T1 WI42
Fig (36)Axial T1WIshows flow void phenomina at cerebral aqueduct44
Fig (37) Axial MR Ventriculogram after injection of gadodiamide into the right lateral ventricle45
Fig (38) Coronal MR Ventriculogram after injection of gadodiamide into the right lateral ventricle46
Fig (39 A) Sagittal T1-weighted scout MR image demonstrating the phase-contrast imaging plane48
Fig (39 B) Axial phase-contrast image demonstrating an annular ROI (arrow) located within the aqueduct49
Fig (40) Graph describing the CSF flow waveform49
Fig(41 A) Axial phase-contrast images demonstrating Hypointense signal within the aqueduct50
Fig(41 B) Axial phase-contrast images demonstrating Hyperintense signal within the aqueduct50

Fig (42 A) Sagittal midline phase-contrast MR imaging showing a point in mid systole images52
Fig (42 B) Sagittal midline phase-contrast MR imaging showing pulsatile CSF flow52
Fig (43) Coronal T1 MRI with arrow pointing to dilated 3rd ventricle. ————————————————54
Fig (44a&b) Axial T1-weighted MRI shows hydrocephalus appeared as dilated temporal horn and a posterior fossa arachnoid cyst55
Fig (45) Axial CT scan showing example of CT measurement—V P ratio56
Fig (46) Axial FLAIR MR shows dilatation of the temporal horns57
Fig (47) Axial T2 MRI image showing rounding and enlargement of the frontal horns and of the third ventricle57
Fig (48) Contrast-enhanced Sagittal T1- weighted MRI images. Tumor filling the fourth ventricle58
Fig (49) diagram ECG prospective & retrospective shows cine phase contrast63
Fig (50) Sagittal cine PC MR cardiac systole causes caudal flow of CSF64
Fig (51) Sagittal cine PC MR cardiac diastole causes a reversal of flow with cephalic movement of CSF64
Fig (52) Axial T2 MR shows enlarged frontal, anterior interhemispheric pericerebral fluid space66
Fig (53) Sagittal T2 MRI shows flow void of the forth ventricle66

Fig (54) Axial T2WI MR shows veins traversing enlarged subarachnoid space66
Fig (55) MR cicternography showing the lateral ventricles are dilated67
Fig (56) Sagittal phase contrast flow sequence shows normal flow68
Fig (57 a) Axial T2 WI shoes engulfment of basilar artery69
Fig (57 b) Coronal T1with contrast <i>MR</i> in the same case case shows expansion into thalamus(pilocytic astrocytoma)69
Fig (58) Sagittal T2WI MR shows ventricular enlargement with mass in the aqueduct of Sylvius69
Fig (59) Axial T2 WI shows minimal CSF flow void70
Fig (60) Plot of volumetric flow rate versus phase of the cardiac cycle shows no increase in CSF flow71
Fig (61) Midline sagittal T1-weighted MR demonstrates tonsillar ectopia (chiari I malformation)71
Fig (62) Sagittal PC MR CSF flow study demonstrates altered flow at the foramen magnum72
Fig (63) Sagittal T2 WI MR shows IVOH secondary to aqueductal stenosis74
Fig (64) Coronal T2WI MR shows "funneling" of the aqueduct 75
Fig (65) Axial FLAIR MR shows neurocysticercosis resulting in

Fig (66) Sagittal T1MRI WI shows dilated lateral &third ventricles in noncommunicating obstructive hydrocephalus caused by obstruction of the foramina of Luschka and Magendie76
Fig (67) Axial T1 MRI WI shows dilated lateral ventricles in noncommunicating obstructive hydrocephalus caused by obstruction of foramina of Luschka and Magendie76
Fig (68) Axial T1 MRI WI demonstrates fourth ventricle dilatation in noncommunicating obstructive hydrocephalus77
Fig (69) CSF flow study demonstrates lack of outflow of CSF from the fourth ventricle into the foramen of Magendie indicating an obstructive hydro-cephalus77
Fig (70 a& b) Sagittal & axial MR Ventriculogram shows intense contrast in the left lateral and third ventricles suggesting a partial block in the right foramen of Monro79
Fig (71a) Sagittal midline T1-weighted image reveals moderate ventricular dilatation with diffuse narrowing of aqueduct. (aqueduct stenosis)80
Fig (71 b) Proton-density weighted axial image at level of third ventricle shows abnormal flow-void at third ventricle81
Fig (71 c) Sagittal midline phase-contrast MR imaging. midsystolic image shows caudal flow81
Fig (71d) mid diastolic image flow is reversed (white signal), indicating bidirectional flow81
Fig (72 a) Sagittal preoperative cine PC MR Image reveals obstructive hydrocephalus83
Fig (72 b) Sagittal cine PC MR Image shows patent third ventriculostomy84

Fig (73) PC MRI sagittal plane postoperative period shows patent of a third ventriculostomy84
Fig (74 a) Graphs showing CSF velocity profiles in a healthy volunteer85
Fig (74b) Graphs showing CSF velocity profiles in a patient 20 months after aqueductoplasty 86
Fig (75a-d) Midsagittal phase-contrast images obtained in a patient 20 months after aqueductoplasty87
Fig (76) Axial FlAIR MR shows the sequel of over drainage with bilateral subdural hematomas91
Fig (77) Axial T1-weighted MRI scan, hydrocephalus, and Arnold-Chiari II syndrome. The shunt tube is shown in the right parietal region92
Fig (78) Axial T2WI MR shows reservoir shunt tubing, collapsed left lateral ventricle and isolated right lateral ventricle with associated interstitial edema92
Fig (79 a&b) Axial Post traumatic hydrocephalus. Axial PC MRI images via the aqueduct of Sylvius in () and (b) during systole and diastole, the signal of CSF flow in the aqueduct of Sylvius is high, and it is low in diastole after shunt insertion94
Fig (79 c) Curve showing a CSF flow velocity in the aqueduct of Sylvius on Posttraumatic hydrocephalus before and after shunting operation95

List of Tables

Table (1) Table types of hydrocephalus	14
Table (2) Table of grading of flow void phenomenon	-60
Table (3) Range of aqueductal peak velocities and flow	-63
Table (4) Peak systolic velocities in Chiari patients	71