Normal Brain Aging; Clinical and Polysomnographic Study

Thesis

Submitted For Fulfillment of The Degree Of M.Sc In Clinical Neurophysiology

Ву

Shaimaa Mohamed Samir *M.B.,B.ch.*

Supervisors

Prof .Dr. Adel Hasanin

Professor of Neurology Cairo University

Prof. Dr. Saly ElKholy

Professor of Clinical Neurophysiology Cairo University

Prof. Dr. Hanan Hosny

Assistant Prof. of Clinical Neurophysiology Beni-Seuf University

> Faculty of Medicine Cairo University 2007

To my loving husband for his unique love, understanding and support

To Rania and Omnia for being my heart sole

To Jana for being my life rosette

And above all, my parents to whom I owe my entire existence and all my success

To all of them, I dedicate this work

Acknowledgment

I'll remain indebted to **Prof. Dr. Adel Hasanin**, Professor of Neurology, Cairo University, for giving me the way to go on with this work, and for his precious time and advisement that made this work accomplished. I need to say that I'll always be thankful for him for helping me and giving me all the support.

I tried to find words that can express my appreciation and respect to **Prof. Dr. Saly ElKholy,** Professor of Clinical Neurophysiology, Cairo University, but I couldn't. It really was a great honor for me to work under her supervision. She guided me patiently all through the work, giving me all the encouragement, support and self-confidence. She was always ready to lend me a hand whenever I needed. In fact, her endless understanding and cooperation will always engraved in the memory.

Special thanks for **Prof. Dr. Hanan Hosny,** Assistant Professor of Clinical Neurophysiology, Beni-Seuf, for her sincere guidance and help.

Before my last word, I feel like I need to express my great love and respect to **Prof. Dr. Ann Ali Abdel-Kader**, the Professor and Head of Clinical Neurophysiology Unit, Cairo University. She was the inspiration to all whom work in her department, and I was so lucky to work within her group.

Finally, I would like to extend my gratitude to all the staff members, especially **Prof. Dr. Seyam Saeed, Prof. Dr. Shahira**Mostafa, and **Dr. Lamia Affifi,** for supporting me and being with me in all my steps. Also, I would like to express my love to all my colleagues, technicians, and to every person in Clinical Neurophysiology unit and in Neurology department, Cairo University, for their faithful support and help.

List of Contents

	Page
* List of Abbreviation	II
* List of Tables	VI
* List of Figures	VIII
* Introduction and the aim of the work	1
* Review of Literature:	
- Chapter 1	4
- Chapter 2	23
- Chapter 3	61
- Chapter 4	91
* Subjects and Methods	110
* Results	118
* Discussion	144
* Summary and Conclusion	156
* Recommendations	157
* References	158
* Arabic Summary	210

List of Abbreviation

ACTH: adrenocorticotropine hormone.

AD: Alzheimer Disease.

AF: Atrial fibrillation.

AHI: Apnea/hypopnea index.

ALSWH: Australian Longitudinal Study on Women's Health.

Apo E: apolipoprotein E.

APP: amyliod precursor protein.

bAS: behavioral active sleep.

BMI: Body mass index.

bQS: behavioral quiet sleep.

CAD: Coronary artery disease.

CAP: cyclic alternating pattern.

CHF: Congestive heart failure.

C-IMT: Coronary intima-media thickness.

CPAP: Continuous positive airway pressure.

CPT: core body temperature.

CRH: cortocotropine releasing hormone.

CRP: C-reactive protein.

CSA: Central sleep apnea.

CSR: Cheyne-stokes respiration.

CT: Computed Topography.

CVD: Cardiovascular.

DLBD: Diffuse Lewy body disease.

DNA: dinucleic Acid.

ECG: Electrocardiography.

EDS: Excessive daytime sleepiness.

SAHS: Sleep apnea/hypopnea syndrome.

EEG: electrencephalography.

EMG: Electromyography.

EOG: electrooculography.

ESS: Epworth Sleepiness Scale.

GABA: gamma aminobutyric acid.

GHRH: Growth hormone releasing hormone.

GRs: Glucocorticoid receptors.

H2O2: hydrogen peroxide.

HPA: hypthalamo-pitutary-adrenal.

HRT: hormone replacement therapy.

HW: Habitwal wake.

ICSD: International Classification of Sleep Disorders.

IL-6: Interleukin-6.

ISH: Isolated systolic hypertension.

LAUP: Laser-assisted uvuloplasty.

LC: Locus ceruleus.

MAOI: Mono-amine oxidase inhibitor.

MEL: Melatonin.

MMSE: Mini-Mental State Examination.

MMST: Mini-Mental State Test.

MRI: Magnetic Resonance Imaging.

MRs: Mineralocorticoid receptors.

MSA: Multiple sleep atrophy.

MSLT: Multiple sleep latency test.

NA: Nocturnal awakenings.

NMDA: N-metheyl D-aspartate.

NO: nitric oxide.

NOS: nitric oxide synthase.

NREM: non rapid eye movement sleep.

O2: Oxygen.

OH: hydroxyl radical.

OSA: Obstructive sleep apnea.

PD: Parkinson's disease.

PDQLS: Parkinson's Disease Quality of Life Scale.

PDSS: Parkinson's Disease Sleep Scale.

PET: Positron Emission Tomography.

PGO: pontine-geniculte occipital.

PLMD: Periodic limb movement disorder.

PLMS: Periodic limb movement of sleep.

PS: paradoxical sleep.

PSG: Polysomnography.

PSQI: Pittsburg sleep quality index.

PVN: paraventricular nucleus.

RBD: REM sleep behavior disorder.

REM: rapid eye movement sleep.

RF: Radiofrequency.

RLS: Restless leg syndrome.

RNA: ribonucleic Acid.

Thesis M.Sc. by Dr. Shaimaa Samir

ROS: reactive oxygen species.

RWA: REM sleep without atonia.

SCN: supra-chiasmatic nucleus.

SDB: Sleep-disordered breathing.

SEA: spontaneous fetal activity.

SOREMP: sleep-onset REM period.

SSRI: Selective serotonine reuptake inhibitors.

SWA: slow wave activity.

SWS: slow wave sleep.

TIAs: Transient ischaemic attacks.

TNF α : tumor necrosis factor alpha.

TST: total sleep time.

UPDRS: Unified Parkinson's Disease Rating Scale.

UPF: Uvulopalatal flap.

UPPP: Uvulo-plasty-pharyngoplasty.

USA: United States of America.

VaD: Vascular dementia.

WML: white matter lesions.

List of Tables

Table (1):	Age distribution among the subjects	118
Table (2):	Sex distribution among the subjects	118
<i>Table (3):</i>	Percentages of diabetes and hypertension among	
	subjects	119
Table (4):	Symptoms suggestive of sleep disturbance among	
	elderly subjects	. 120
Table (5):	Results of MMST among the elderly subjectsa	121
<i>Table</i> (6):	The results of primitive reflexes	121
Table (7):	The range and mean \pm SD of sleep architecture	.122
Table (8):	Range and mean \pm SD for sleep stages	
Table (9):	Range and mean \pm SD for PLM index, AHI, and oxygen	
	Desaturation index in the subjects	124
Table (10):		
	regards sleep architecture	. 126
Table (11):	Comparison between Group 1A and Group 1B as	
	regards sleep stages	. 128
Table (12):	Comparison between Group 1A and Group 1B as	
	regards sleep abnormalities	129
Table (13):	Age distribution between the elderly group (Group 1)	
	and the adult group (Group 2)	131
Table (14):	Sex distribution among the elderly group (Group 1)	
	and the adult group (Group 2)	131
Table (15):	Comparison between Group 1 and Group 2 as regards	
	sleep architecture	132

Table (16):	Comparison between Group 1 and Group 2 as regards
	latencies to various sleep stages
Table (17):	Comparison between Group 1 and Group 2 as regards
	% of various sleep stages from TST
Table (18):	Comparison between Group 1 and Group 2 as regards
	sleep abnormalities
Table (19):	Comparison between Group 1C and Group 1D as
	regards sleep architecture and latencies to sleep stages140
Table (20):	Comparison between Group 1C and Group 1D as
	regards % of various sleep stages from TST 141
Table (21)	Comparison between Group 1C and Group 1D as
	regards apnea indices, hypopnea indices, and oxygen
	desaturation indices

List of Figures

		Page
<u>Figure (1):</u>	Brain structures	<u>5</u>
Figure (2):	Shows that in each cycle of the consecutive NREM/REM Sleep, slow wave activity is generally less than in the	<u>.</u>
	cycle before	25
Figure (3):	Model of some of the major systems involved in	
	regulating muscle activity in REM sleep	29
Figure (4):	Different sleep stages	31
Figure (5):	Cyclic alternating pattern in stages II sleep	42
Figure (6):	Polyphasic (multiphase) sleep following birth changes	
	first to biphasic (two-phase) sleep among preschool	
	children and later to monphasic (single phase)	45
Figure (7):	Changes with age in total amount of daily sleep and	
	percentage of REM sleep	45
Figure (8):	Hypogram showing sleep characteristics in young	
	Adults and elderly persons	49
Figure (9):	Polygraph showing obstructive sleep apnea	64
Figure (10):	Polygraph showing central sleep apnea	65
Figure (11): Figure (12):	The application of the electrodes of polysomnography Polysomnography sitting	115 116
Figure (13):	Sex distribution among the subjects	118
_	The % of elderly subjects with history suggestive of disturbance. The % of different sleep stages from TST in elderly	_
	Group	<u>125</u>
Figure (17):	Comparison between Group 1A and Group 1B as	

	regards sleep architecture	127
Figure (18):	Comparison between Group 1A and Group 1B as	
	regards sleep stages	129
Figure (19):	Comparison between Group 1A and Group 1B as	
	regards sleep abnormalities	130
Figure (20):	Comparison between Group 1 and Group 2 as regards	
Figure (21):	Sleep architecture	<u>133</u>
	latencies to various sleep stages	134
Figure (22):	Comparison between Group 1 and Group 2 as regards	
	% of various sleep stages from TST	135
Figure (23):	Comparison between Group 1 and Group 2 as regards	
	sleep abnormalities	138
Figure (24):	Comparison between Group 1C and Group 1D as	
	regards sleep architecture and latencies to sleep stages	141
Figure (25):	Comparison between Group 1C and Group 1D as	
	regards % of various sleep stages from TST	142
Figure (26):	Comparison between Group 1C and Group 1D as	
	regards apnea indices, hypopnea indices, and oxygen	
	desaturation index	143

Abstract

It is well documented that brain aging is associated with many physiological and pathological changes that affect cognition, physical performance and sleep patterns.

It is also necessary to understand that sleep disturbances are considered an important health concern that may affect quality of life, especially in the elderly, who continue to feel the sensation of ill-being. This work was carried on a group of 20 healthy Egyptian elderly (above 60 yr), men and women, with a comparison group of adults (20-32 yr), men and women. The history of sleep characteristics and patterns was evaluated. Radiological and laboratory tests were ran as a routine part of the examination, and finally, an overnight PSG was performed to all subjects to analyze their sleep, to score all the sleep stages, and to detect any sleep disturbance. The study revealed that sleep of the elderly undergoes many changes; it becomes more fragmented with increased number of awakenings and decreased sleep efficiency, as compared to the adults. The most striking change in sleep of the elderly was that their sleep becomes lighter with decreased percentage of slow wave sleep or deep sleep from the total sleep time. apnea/hypopnea syndrome (SAHS) was the most prevalent sleep disorder among the subjects (90%), the interesting point is that the disorder was present even when the subject had no sleep complaint. Periodic limb movement disorder (PLMD) was also common among the subjects (25%) and all of the examined subjects were unaware of the disorder. REM sleep behavior disorder (RBD) could not be detected in the study sample.

Keywords:

Normal brain Polysomnographic Sleep behavior disorder

Introduction and Aim of Work