

Synthesis of Various Pyrimidine Derivatives having Potential Biological Activity

Thesis Presented by

GHADA HUSSEIN ABBAS AL-ANSARY

Instructor of Pharmaceutical Chemistry
Ain Shams University

Submitted for the partial fulfillment of the *Master Degree*In Pharmaceutical Chemistry

Under the supervision of

DR. MOHAMED ABDEL HAMID ISMAIL

Professor of Pharmaceutical Chemistry &

Dean of Faculty of Pharmacy

Ain Shams University

DR. DALAL A. ABOU EL ELA

Assistant Professor of
Pharmaceutical Chemistry
&
Acting Head of Pharmaceutical
Chemistry Department
Ain Shams University

DR. KHALID A. M. ABOUZID

Assistant Professor of Pharmaceutical Chemistry Ain Shams University

Faculty of Pharmacy Ain Shams University (2006)

Aknowlegment

I am sincerely indebted and profoundly grateful to Professor Dr. Mohamed Abdel Hamid Ismail, Professor of Pharmaceutical Chemistry, for his kind supervision, valuable advice, constant support and continuous guidance. I really appreciate his continuous efforts to ameliorate our department by providing it with the latest technology. One of his creditable accomplishments was founding the Computer Aided Drug Design laboratory at the faculty, which empowered us to cope up with the latest developments in chemistry and drug design and helped me to furnish the thesis in its final form.

It is also my pleasure to give my deepest gratitude to Dr. Dalal A. Abou El Ela, Assistant Trofessor of Pharmaceutical Chemistry, for her kindness, sentimental support, constant encouragement, guidance and continuous advice throughout this work.

I am extremely grateful and profoundly indebted to Dr. Khalid A. M. Abouzid, Assistant Professor of Pharmaceutical Chemistry, for his valuable guidance, constant encouragement, time dedication, fruitful advices, scientific supervision, untiring help and priceless support throughout the whole practical work, molecular modeling part and during writing this thesis. I really thank him for his

tremendous sincere support without which this thesis wouldn't have been possible.

I wish to express with thankfulness my gratitude to all members of our Pharmaceutical Chemistry department for their friendly cooperation and unconditional love. Specially, I do thank my colleagues: Eman Elawady, Maiy Yousof, Deena Lasheen, Amgad Roshdy and Dr. Nasser Saad for his priceless contribution in the performance of the last practical part in this thesis.

I wish to express my special thanks to all the members of the NMR unit, faculty of science, Cairo University; Professor Dr. Ahmed Farag and his co-

workers for their cooperation, understanding and great kindness.

I wish also to express my sincere thanks and profound gratitude to my parents, my husband and my sisters: Noha & Lamiaa for their patience, understanding, continuous support, encouragement and endless help throughout the whole work. To them I dedicate this task.

Finally, I wish to thank my little daughter for her beautiful smile which alleviates all the difficulties of this work.

Contents

• List of Figures	V
• List of Tables	vii
• List of Abbreviations	ix
• Abstract	xi
• Introduction	1
A) Chemistry of Pyrimidines	2
A) Synthesis of Pyrimidines	2
A.1) Route (i)	4
A. 1. i) Urea	6
A. 1. ii) Thiourea	8
A. 1. iii) Amidines	9
A.2) Route (ii)	13
A.3) Route (iii)	14
A.4) Route (iv)	16
A.5) Route (v)	18
B) Pharmacology	19
B. i) Pharmacological values of pyrimidines	19
1. Cytotoxic activity	19
2. Antimicrobial activities	20

3. Serotonergic Neurotransmission activities	21
3. i. 5-HT _{1A} Receptor agonists	21
3. ii. 5-HT ₆ Receptor antagonists	22
4. CNS depressants	22
5. Antifungal agents	23
6. Treatment of baldness	23
7. Antithyroid agents	24
8. Antihypertensive agents	24
8. i. Centrally acting Sympatholytics	24
8. ii. α_1 -Adrenoceptor antagonists (ARs) activities	25
8. iii. Angiotensin II receptor blockers	27
B. ii) Pharmacological values of arylpiperazines	40
1. Antihypertensive agents	40
2. Dual-acting agents for treatment of benign prostatic	
hypertrophy (BPH)	41
3. 5-HT ₄ antagonists	43
4. Selective Dopamine D ₃ receptor antagonists and	
partial agonists	44
5. Psychosedative agents	44
6. Potential treatment of erectile dysfunction	45
C) Molecular Modeling	46
C.I) Accelrys Modules and Computer-Aided Ligand Design	46

C.2) Molecular Modeling Studies on Ang II Antagonists	50
C.3) Molecular Modeling Studies on α_1 -AR Antagonists	53
Research Objectives	56
Theoretical Discussion	67
A) Part I	68
The retrosynthetic strategy to prepare the target compound	ls having
potential Ang II receptor antagonist activity	
B) Part II	86
Retrosynthetic strategy to prepare target compounds having	potential
α_1 -AR antagonist activity.	
Experimental	97
Molecular Modeling and Biological Evaluation	131
A) Molecular Modeling	132
A.I) Common Features Hypothesis Generation for Ang II	receptor
antagonists using Catalyst (HipHop) modules	132
A.I.1) Principle	132
A.I.2) Common Features Hypothesis Generation	133

A.I.3) Compare/Fit simulation studies	137
A.I.4) Conclusion of molecular modeling for Ang II	
Antagonists	141
A.II) Common Features Hypothesis Generation for α ₁ -AR Ant	agonists
using Catalyst (HipHop) modules	142
A.II.1) Principle	142
A.II.2) Common Features Hypothesis Generation	144
A.II.3) Compare/Fit simulation studies	145
A.II.4) Conclusion of molecular modeling for α_1 -AR	
Antagonists	151
B) Biological Evaluation	
Materials	152
Animals & Animals treatment	152
Apparatus	152
Evaluation of the hypotensive activity of test hit compounds	s (XIIIa,
XIIIb) as Ang II antagonists on normotensive rats	152
Statistical analysis	153
Evaluation of the hypotensive activity of test hit compounds a	s α_1 -AR
antagonists on normotensive rats	155
References	158

List of Figures

1. Schematic illustration of the main routes of pyrimidine synthesis	3
2. Reaction of acetylacetone with formamidine, guanidine, urea	
& thiourea to produce the corresponding 4,6-dimethylpyrimidines	5
3. The common features hypothesis of the AT_1 receptor antagonists	52
4. The common features hypothesis for α_1 -AR antagonists	55
5. The retrosynthetic strategy to prepare the target compounds having	
Potential Ang II receptor antagonist activity	68
6. Synthesis of 4,4-Dimethyl-2-(2'-methoxyphenyl)oxazoline (II)	69
7. The Ullman reaction	71
8. The Negishi reaction	71
9. The Suzuki reaction	72
10. Mechanism of the Suzuki reaction	72
11. Synthesis of 4,4-dimethyl-2-(4'-methylbiphenyl-2-yl)oxazoline	
(III) & 2-cyano-4-methylbiphenyl (V)	73
12. Mechanism of tetrazole ring formation	76
13. The expected EIMS fragmentation pattern of the molecular ion of	•
XIIb	81
14. The expected EIMS fragmentation pattern of the molecular ion of	•
XIIIb	82
15. Retrosynthetic strategy to prepare target compounds having potent	tial

α_1 -AR antagonist activity	86
16. Mechanism of formation of triazolopyrimidine from the reaction	n of
formic acid with 4-hydrazino,2-mercaptopyrimidine	88
17. The expected EIMS fragmentation pattern of the molecular ion	of
XVIc	94
18. The expected EIMS fragmentation pattern of the molecular ion	of
XVIIb	96
19. The training set of the lead Ang II receptor antagonists	132
20. Mapping of Losartan with the AT ₁ receptor antagonists hypothesis	
number 1	135
21. The training set of the lead α_1 -AR antagonists	143
22 Manning of Prazosin to the generated α ₁ -AR antagonists	146

List of tables

1.	6-Alkyl-2-thioxo-(1H,3H)-pyrimidin-4-one (XIa, b)	109
2.	4-Hydroxy-6-alkyl-2-[(2"-cyanobiphenyl-4'-	
	yl)methylthio]pyrimidines (XII)	111
3.	FT-IR, ¹ H-NMR,EIMS spectral data for compounds XIIa,b	111
4.	4-Hydroxy-6-alkyl-2-[(2"-carboethoxybiphenyl-4'-	
	yl)methylthio]pyrimidines (XIIIa, b)	112
5.	FT-IR, ¹ H-NMR spectral data for compounds XIIIa,b 113	
6.	4-Aryl-1-chloroacylpiperazines (XIVa-d)	114
7.	1-(aryl)-4-(3-chloropropyl)piperazine (XV)	115
8.	6-Alkyl-4-hydroxy-2[2'(4"-aryl-piperazin-1"-yl)-2'-	
	oxoalkyl]thiopyrimidines (XVI)	117
9.	FT-IR, ¹ H-NMR,EIMS spectral data for compounds XVIa-f	118
10	.4-Hydroxy-6-substituted-2[3'(4"-aryl-piperazin-1"-	
	yl)propylthio]pyrimidines (XVII)	120
11	.FT-IR, ¹ H-NMR,EIMS spectral data for compounds XVIIa-c	121
12	.7-Methyl-2[2'(4"-aryl-piperazine-1"-yl)-2'-oxoalkylthio]	
	[1,2,4]triazolo[4,3-c]pyrimidine(XXI)	126
13	.FT-IR, ¹ H-NMR,EIMS spectral data for compounds XXIa,b	126
14	. Fit values of the best fit conformers of the lead compounds	
W	ith the generated Ang II antagonist hypothesis	138

15. Mapping of the test set compounds (XIIa, XIIb, XIIIa &	
XIIIb) with our Ang II antagonists hypothesis	140
16.Mapping of the test set compounds (XVIa-f, XVIIa-c,	
XXIa, b & XXIII) with our α_1 -AR antagonists hypothesis	147
17. Mean percentage reduction in the SBP of normotensive rats	
treated with different tested new compounds (XIIIa & XIIIb)	
as suggested Ang II antagonist in Comparison to their fitting	
values with Ang II antagonist hypothesis	154
18.Mean percentage reduction in the SBP of normotensive rats	
treated with different tested new compounds (XVIa,e, f, XVIIa-c,	
XXIb & XXIII) as suggested Ang II antagonist in Comparison	
to their fitting values with Ang II antagonist hypothesis	155

List of Abbreviations

3D: 3-Dimensional.

5-HT: 5-Hydroxytryptamine.

A: Angstroms.

ACE: Angiotensin Converting Enzyme.

Ang II: Angiotensin II.

AR: Adrenoceptors.

AT₁: Angiotensin receptors, subtype-1.

AT₂: Angiotensin receptors, subtype-2.

BP: Blood pressure.

BPH: Benign prostatic hyperplasia.

BPT: 5-(Biphenyl-2-yl)tetrazole.

CADD: Computer-aided drug design.

Clad: Calculated.

CALD: Computer-aided ligand design.

CNS: Central nervous system.

CoMFA: Comparative molecular field analysis.

D: Dopamine receptors.

DMF: Dimethylformamide.

DMSO: Dimethylsulfoxide.

EIMS: Electron impact mass spectroscopy.

FT-IR: Fourier transform infrared spectroscopy.

HBA: Hydrogen bond acceptor.

Het: Heterocycle.

HY: Hydrophobic.

ip: Intraperitonial.

I₁: Imidazoline-1 receptors.

NBS: N-Bromosuccinimide.

NMR: Nuclear magnetic resonance.

PBD: Protien data bank.

PI: Positive ionizable.

QSAR: Quantitative structure activity relationship.

RAS: Renin-angiotensin system.

RSA: Receptor surface analysis.

rt: Room temperature.

SE: Standard error.

THF: Tetrahydrofuran.

TLC: Thin layer chromatography.

TPO: Thyroid peroxidase.

UV: Ultraviolet.