

Effect of antiepileptic drugs on thyroid profile in Epileptic children and adolescents

Case control study

Thesis
Submitted for partial fulfillment of Master of Science degree in
Neurology and Psychiatry

Presented by
Fairouz Ahmed Abdel-Moneim Tawfik
(M.B.B.Ch.)

Under supervision of

Prof. Dr. Samia Ashour Helal

Professor of Neurology Faculty of Medicine - Ain Shams University

Prof. Dr. Naglaa Mohamed El-Khayat

Professor of Neurology Faculty of Medicine – Ain Shams University

Dr. Mohamed Mahmoud Fouad

Lecturer of Neurology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2014

تأثير الأدوية المضادة للصرع على هرمونات الغدة الدرقية في الأطفال والمراهقين المصابين بالصرع

دراسة الحالة الضابطة

خطة بحثية مقدمة توطئة لدراسة درجة الماجيستير في

طب المخ والأعصاب و الطب النفسى

مقدمة من الطبيب/فيروز أحمد عبدالمنعم توفيق بكالوريوس الطب و الجراحة كلية الطب - جامعة عين شمس

تحت إشراف

أ د/ سامية عاشور هلال أستاذ طب المخ و الأعصاب كلية الطب - جامعة عين شمس

أ.د/ نجلاء محمد الخياط أستاذ طب المخ والأعصاب كلية الطب - جامعة عين شمس

د/ محمد محمود فو اد مدرس طب المخ والأعصاب كلية الطب - جامعة عين شمس

> كلية الطب جامعة عين شمس

بِشِهْ اللَّهُ الجَّذِ الْجَخِيرِ فِي

وقُلِ اعْمَلُوا فَسَيَرَى اللَّهُ عَمَلَكُمْ ورَسُولُهُ والْمُؤْمِنُونَ ورَسُولُهُ والْمُؤْمِنُونَ

صدق الله العظيم سورة التوية آية (105)

First, I wish to express my deep thanks, sincere gratitude to **Allah**, who always helps me, care for me and grunted me the ability to accomplish this thesis.

I would like to express my deepest gratitude, thanks and gratefulness to **Prof. Dr. Samia Ashour Helal**, Professor of Neurology and Psychiatry, Ain Shams University, for her enthusiastic support, continuous encouragement valuable scientific advices, and great help through out of the accomplishment of this work.

I am very grateful to **Prof. Dr. Naglaa Mohamed El Khayat**, Professor of Neurology and Psychiatry, Ain Shams University, for her kind supervision, support, indispensable suggestion, and great help through out of course of my thesis.

My sincere thanks to **Dr. Mohamed Mahmoud Fouad**, lecturer of Neurology and Psychiatry, Ain Shams University, for his kind and meticulous supervision, support, help, valuable supervision all through the work.

Words can never express my sincere thanks to my family and my fiancé for their generous support and continuous encouragement.

I would like to express my overlasting gratitude to all my dear friends, colleagues and all who offered me any kind of help and encouragement wishing them the best of all.

I would like also to thank the patients who agreed willingly to be part of my study and without them I wouldn't have been able to accomplish this work.

List of Contents

	Page
Acknowledgment	
Introduction and Aim of The Work	1
Review of Literature	4
Chapter 1: Epilepsy in children and adolescents	4
Chapter 2: Epilepsy and Thyroid dysfunction	21
Chapter 3: Effect of antiepileptic drugs on thyroid	
function	30
Patients and Methods	43
Results	47
Discussion	76
Summary and conclusion	83
Recommendations	85
References	86
Arabic Summary	

List of Abbreviations

AED(s) Antiepileptic drug (s)

apoA-I Apolipoprotein A- I

apoB Apolipoprotein B

BHS Breath-holding spells

CBZ Carbamazepine

CT Computed tomography

DHEAS Dehydroepiandrosterone sulfate

ECG Electrocardiogram

EEG Electroencephalogram

FT3 Free triiodothyronine

FT4 Free thyroxine

GABA g-aminobutyric acid

HDL-C High-density lipoprotein cholesterol

HPT Hypothalamic pituitary thyroidHROOL Health-related quality of life

ILAE International League Against Epilepsy

IQ Intelligence quotient

LDL Low-density lipoprotein

LDL-C Low-density lipoprotein cholesterol

Lp(a) Lipoprotein (a) mIU/L Milliunits per litre

MRI Magnetic resonance imaging

NEAD Non-epileptic attack disorder

ng/ml Nanogram per milliliter

OXC Oxycarbazepine Phenobarbital

pg/ml Picogram per milliliter

PVN Para-ventricular nucleus

SUDEP Sudden unexpected death in people with epilepsy

Triiodothyronine

T4 Thyroxine

TBG Thyroid binding globulin

TC Total cholesterol

TG Triglycerides

TRH Thyrotropin releasing hormone

TRs Thyroid hormone receptors

TSH Thyroid stimulating hormone

TSHR Thyrotropin receptor

VPA Valproic acid

List of Tables

Table No.		Page No.
1	Classification of seizures (ILAE, 1981)	7
2	International Classification of Epilepsies and Epileptic Syndromes (ILAE, 1989)	8
3	Syndromic classification of epilepsy	10
4	Differential diagnosis of seizures	13
5	Comparison among patient groups regarding age and sex	48
6	Comparison between the epileptic groups regarding classification of epilepsy and duration of treatment	52
7	Doses of anti-epileptic drugs in the epileptic groups	55
8	Comparison among the studied groups regarding thyroid profile	60
9	Post-HOC Comparison among the studied groups regarding Thyroid Profile	61
10	Comparison among the studied groups regarding abnormalities of the Thyroid Profile	65
11	Correlation among Thyroid profile and each of duration and dose of treatment	70
12	Comparison between genders among the studied cases regarding Thyroid profile	71

List of Tables (Cont.)

Table No.		Page No.
13	Comparison between age groups (children or adolescents) among the studied cases regarding Thyroid profile	72
14	Comparison between localized and generalized types among the studied cases regarding Thyroid profile	73
15	Comparison between patients with low and normal levels of FT3 and/or FT4 as regard to age category	74
16	Comparison between patients with low and normal levels of FT3 and/or FT4 as regard to duration of treatment	75

List of Figures

Fig. No.		Page No.		
1	Distribution of epileptic syndromes in cohorts of children			
2	The hypothesis that cardiovascular abnormalities and hence SUDEP	24		
3	Hypothalamic–pituitary–thyroid axis illustrating the reciprocal relationship between thyroid hormones and TSH	32		
4	Conceptual model of quality of life in children with epilepsy	41		
5	Comparison among groups under the study regarding age	49		
6	Comparison among the studied groups regarding age groups	50		
7	Comparison among the studied groups regarding sex	51		
8	Comparison between the epileptic groups regarding classification of epilepsy	53		
9	Comparison between the epileptic groups regarding duration of treatment	54		
10	Doses of anti-epileptic drugs in the epileptic groups	56		
11	Comparison among the studied groups regarding Serum FT3	62		

List of Figures (Cont.)

Fig. No.					Page No.
12	Comparison amon regarding Serum FT	_	studied	groups	63
13	Comparison amon regarding Serum TS	_	studied	groups	64
14	Comparison amon regarding Serum FT	_	studied	groups	66
15	Comparison amon regarding Serum FT	_	studied	groups	67
16	Comparison amon regarding Serum TS	_	studied	groups	68
17	Comparison amon regarding rate of sub	_			69

Introduction

Epilepsy is one of the serious neurological disorders which results in profound morbidity and mortality (El-Tallawy et al., 2013).

The annual incidence ranges from 5-7 per 10 000 in the age group of 0-15 years, and being the most common neurological disorder of childhood (Nettekoven et al., 2008).

Diagnostic criteria and treatment alternatives for childhood epilepsies may differ in terms of disease course and outcome. Although many alternatives have been recommended for treatment including vagus nerve stimulation, epilepsy surgery and ketogenic diet, the primary treatment of choice is the use of antiepileptic drugs (AEDs) (Toledano and Gil-Nagel, 2008).

Epilepsy treatment should be goal oriented and approached in an objective fashion. Seizure elimination or significant seizure reduction, reducing seizure severity, and maintaining normal lifestyle for patient and owner are all important considerations (**Podell, 2013**).

The treatment of childhood epilepsy is different from that of adult epilepsy because many epilepsy syndromes are specifically pediatric and maturational process requires prescribing these drugs according to age and weight (Chiron, 2012).

Knowledge of the essential properties, key indications and interactions of each antiepileptic drug will help to optimize efficacy and reduce adverse reactions (Hadjiloizou and Bourgeois, 2007).

Endocrine disorders are of major concern for clinicians who treat patients with epilepsy. This is even more important during a stage of rapid growth, weight gain, skeletal and genital maturation as well as neurological development by the modulatory effects of hormones during childhood. Therefore, it is of importance for physicians and epileptologists to be well grounded in hormonal and/or metabolic alterations associated with epilepsy or AEDs possibly requiring regular monitoring of blood parameters, inducing further investigation and treatment or reevaluation and possibly alteration of AEDs treatment (Luef and Rauchenzauner, 2009).

Thyroid hormones have critical effects on protein synthesis and destruction, carbohydrate and lipid metabolism in all tissues. The presence of thyroid hormones is essential for the development of central nervous system. Thyroid hormone deficiency may cause growth and developmental disorders in children even if growth hormone levels are within normal limits (Setian, 2007).

AEDs lead to several degrees of impairment in thyroid hormone homeostasis by changing its biosynthesis, secretion, transport, metabolism and excretion (**Benedetti et al., 2005**).

Disturbances in thyroid hormone homeostasis associated with AEDs have been reported for the first time by **Oppenheimer and McPherson (1961).**

Since then, contradictory results have been reported, and the effects of AEDs on thyroid functions, particularly in children, have become a subject of debate for the clinicians (Cansu et al., 2006; Hirfanoglu et al., 2007; Attilakos et al., 2009).

Castro-Gago et al. (2007) stated that varying grades of subclinical hypothyroidism were observed in a number of children receiving long-term therapy with valproate (VPA) and Carbamazepine (CBZ) as AEDs.

Introduction and Aim of The Work

However, Verrotti et al. (2009) noted that VPA monotherapy does not alter thyroid hormones. On the contrary, alterations of thyroid hormones occur in CBZ treated children however alterations are not associated with clinical or subclinical hypothyroidism.

Moreover, Aggarwal et al. (2011) concluded that CBZ and VPA therapy alters thyroid functions by decreasing FT4 levels. Compensation by increase in thyroid-stimulating hormone (TSH) is better with VPA.

Aim of the Work

To study the correlation between the administration of valproate and carbamazepine as monotherapy for controlling epileptic patients in childhood and adolescents and changes in the levels of thyroid hormones.

Chapter 1

Epilepsy in children and adolescents

Epilepsy is defined as a 'tendency to recurrent unprovoked seizures'. Epilepsy should be regarded as a symptom of an underlying condition although in some cases the underlying condition is a genetic epilepsy, also known as idiopathic epilepsy; in which seizures are the sole or predominant manifestation. A complete diagnosis of epilepsy should include the underlying cause, where this can be established (Hart, 2012).

An epileptic seizure is an episode of neurologic dysfunction in which abnormal neuronal firing is manifested clinically by changes in motor control, sensory perception, behavior, or autonomic function (Pitkänen and Lukasiuk, 2009).

Epilepsy is the condition of recurrent spontaneous seizures arising from aberrant electrical activity within the brain. While anyone can experience a seizure under the appropriate pathophysiological conditions, epilepsy suggests an enduring alteration of brain function that facilitates seizure recurrence. Epileptogenesis is the process by which the normal brain becomes prone to epilepsy (**Pitkänen and Lukasiuk**, **2009**).

The complete process of epileptogenesis is not known for any single type of seizure. Broadly, reciprocal corticothalamic interaction is probably important in the generation of generalized seizures, whereas a local excitation—inhibition imbalance is the likely basis of partial seizures. Disorders of membrane ion channels are increasingly reported in epilepsy, but complex changes at receptor, membrane, cyto-architectural and system levels are probably involved in most cases. Modern pathological studies are beginning to define the