

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام من ٢٠-٠٤% في درجة حرارة من ٢٥-١٥ مئوية ورطوية نسبية من ٢٥-١٥ المنافلات المنافلات

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

بعض الوثائق الاصلبة تالفة

بالرسالة صفحات لم ترد بالاصل

Cairo University Faculty of Science

> "Physical properties of PMMA/ semiconductor nano-composites as solar collector used in the energy controlling system in buildings"

Thesis

Submitted for the Ph.D Degree in Science (Experimental Physics)

 $\mathcal{B}y$

Wafaa Mohamed Morsi

M.Sc.

To
Faculty of Science
Cairo University
Egypt

(2010)

7 V 57

APPROVAL SHEET

"Physical properties of PMMA/ semiconductor nanocomposites as solar collector used in the energy controlling system in buildings"

Thesis

Ph.D degree in Science

By

Wafaa Mohamed Morsi Mohamed

Submitted to the

Physics Department,

Faculty of Science, Cairo University

Supervision Committee

Prof. Dr. Samir Soliman Hamza

Professor of Physics, Faculty of Science, Cairo University

Prof. Dr. Mohamed Mahmoud Abd-Elrazik

Professor of Physics, Housing & Building Research Center (HBRC).

Dr. Magdy M. Omar

The Control of the Harington

()man

Association Professor Physics, Faculty of Science, Cairo University

Dr. Mona Bakr Mohamed

M. Bakr

Lecturer of Photochemistry, National Institute of Laser Enhanced Science (NILES), Cairo University

Prof.Dr./ S.M. Ma S.

Head of Physics department
Faculty of Science
Cairo University

Contents

	Page no
Acknowledgement	I
Abstract	II
Chapter I: Theoretical background and literature review	
1.1 Introduction	1
1.2 Theoretical Consideration of Electrical Properties of Polymeric Materials	4
1.2.1 DC-Conduction Mechanism in Polymers	4
1- Ionic Conduction	5
2- Hopping Conduction	6
3- Conduction in Extended States	. 8
1.2.2 Previous Work on DC-Electrical Properties of Polymer	9
1.3.1 Dielectric Properties of Polymer	. 12
1 - Electrostatic Relations	12
2- Molecular Polarizability	. 14
a- Electronic Polarization	14
b- Atomic Polarization	14
c- Orientational Polarization	15
3- General Theory of Dielectric Relaxation	. 15
1.3.2 Previous Work on AC- Electrical Properties of Polymer	23
1.4.1 Optical Absorption Spectroscopy	24
1- Molecular Energy Levels	24
2- Beer- Lambert Law	26
3- Electronic Transition in QDs	27
3.1 Electronic Transitions in Case of CdSe	
4- Optical Properties of Amorphous Solids	
5- Luminescence	41
6- Stokes Shift	
1.4.2 Previous Work on Optical Properties	42

1.5-1 Luminescent Solar Collector (LSCs)	5
a- Principle of Operation of LSC	51
b- Materials of LSC	52
1- Organic Dyes	52
2- Rare Earth	53
3- Quantum Dots	53
1.5-2 Previous Work on Solar Collector	55
1.6 Aim of The Present Work	60
Chapter II: Experimental Work	
2.1 Introduction	61
2.2 Materials Used in Work	61
2.2.1 Polymethylmethacrylate(PMMA)	61
2.2.2 Cadmium Selenide (CdSe)	64
2.3 Methodology	6
2.3.1 Preparation of CdSe Dots	68
2.3.2 Preparation of CdSe Rods	68
2.3.3 Preparation of CdSe Tetrapods	69
2.3.4 Preparation of CdSe Branched Rods	69
2.3.5. Embedding CdSe nanocrystals in polymer matrix	70
2.4 Instrumentation	71
2.4.1. Transmission Electron Microscopy (TEM)	71
2.4.2. Characterization of CdSe QDs Shapes and Size	7
2.5 Measurements	74
2.5.1. Electrical Properties Measurements	74
a- Dc-Electrical Measurements	74

b- Dielectrical Properties Measurements	74
2.5.2. Optical Measurements	75
a- Optical Absorption	75
b- Fluorescence	75
2.5.3. Studying the Photostability of CdSe/PMMA	75
Chapter III: Results and Discussion	
3.1. Introduction	78
3.2.a. Electrical Properties of PMMA Incorporated with CdSe Quantum Dots	79
3.2.1 Theoretical Consideration	79
3.2.2 Experimental Measurements	82
3.2.b. Temperature Dependence of Electrical Conductivity of PMMA Incorporated with CdSe Quantum Dots	90
3.3. Dielectric Properties of PMMA Incorporated with CdSe Quantum Dots	91
3.4. Optical Properties of CdSe quantum dots imbedded in PMMA polymer matrix	108
3.5. Fluorescence measurements of PMMA and its CdSe QDs composites	117
3.6. Optical Constant	120
3.7. Effect of irradiation by UV-light on the CdSe QDs	122
3.7.1. Photostability of CdSe nanocrystal embedded in Polymer matrix	122
Conclusion	125
References	127
Arabic Summary	137

List of Figures

·	Page no
Chapter I: Introduction &Literature Survey	
Figure (1.1): The deformation diagram of ionic potential- energy wells by	6
an applied electric field.	
Figure (1.2): A mobility gap.	7
Figure (1.3): Diagram of electron –transfer mechanisms between adjacent	8
sites separated by a potential - energy barrier.	
Figure (1.4): Dispersion of molar polarization in a dielectric (schematic).	15
Figure (1.5): Debye dielectric dispersion curves.	21
Figure (1.6): Semicircular Cole- Cole plot.	22
Figure (1.7): Molecular energy level.	26
Figure (1.8): Schematic diagram of electron occupancy of allowed energy	28
bands for given materials.	
Figure (1.9): The band structure of bulk CdSe, including relevant energies.	32
Figure (1.10): Size dependence of the absorption spectrum of CdSe QDs.	34
Figure (1.11): (a) Schematic diagram of the approximated energy levels in	35
a CdSe quantum dot. The fine structure is not taken into account.	
Not drawn to scale. (b) Absorption spectrum of CdSe QDs	
correspond to the transitions indicated in (a).	
Figure (1.12): The allowed optical transitions between the quantized	36
energy levels of the electron and the hole in small semiconductor	
nanoparticles.	
Figure (1.13): The parts of the absorption edge.	. 37
Figure (1.14): Energy (E)vs. wave vector (k') for, a- direct transition and	39
b- non-direct transition	
Figure (1.15): The non-direct transition steps.	40
Figure (1.16): Schematic 3D view of principle of operation of Luminescent solar concentrator (LSC).	53

Chapter II: Experimental Work	
Figure (2.1): Experimental setup for chemical production of quantum dots	s. 67
Figure (2.2): Scheme Summarize the presses of Preparation of QDs	71
imbedded in Polymer Matrix.	
Figure (2.3a): TEM images of single CdSe QD with a sphere particle.	72
Figure (2.3b): TEM images of single CdSe QD with a rod-particle.	72
Figure (2.3c): TEM images of single CdSe QD with a branched particle.	73
Figure (2.3d): TEM images of single CdSe QD with a tetrapod-particle.	73
Figure (2.4): Schematic diagram for the sample holder used to carry out	76
the electrical conductivity measurements.	
Figure (2.5): The circuit used for the measurements of the D.C. electrical	76
conductivity.	
Figure (2.6): Experimental set up for absorbance measurements using	77
a Perkin Elmer Lambda spectrometer.	
Chapter III: Results and Discussion	
Figure (3.1a,b): Variation of current-voltage (I-V) of different	84
concentrations and shapes CdSe QDs/PMMA samples at (303K).	
Figure (3.2): Variation of measured current of PMMA samples with	85
different QDs concentration at constant voltage (100 V).	
Figure (3.3a,b): ariation of current versus square root of field for different	t 86
concentrations and shapes of QDs loaded PMMA samples.	
Figure (3.4 a,b): Variation of ln (I/F) versus square root of field for	87
different concentrations and shapes of CdSe QDs loaded PMMA	
samples at room temperature (303K).	
Figure (3.5a,b): Variation of Ln(J/V ²) versus 1000/V for different	89
concentrations and shapes of CdSe QDs loaded PMMA amples	
at room temperature (303K) according to Fowler-Nordhiem relation	ı.
Figure (3-6a,b): The temperature dependence of dc-conductivity for	92
different concentrations and shapes of CdSe ODs, in PMMA matrix	x .

Figure (3-7): The dependence of the dc-conductivity on the inverse square	93	
root of temperature for all PMMA/CdSe QDs matrix and blank .		
Figure (3.8): The dielectric constant vs. frequency at constant temperature		
for different shapes CdSe QDs in PMMA matrix.	95	
Figure (3-9a-e): The frequency dependence of the dielectric loss for	96,97	
different shapes of QDs/PMMA at constant temperature (300K).		
Figure (3-10a): The dependence of ac-conductivity on the applied	100	
frequency for rod and tetra QDs shape with PMMA composites at		
room temperature.		
Figure (3-10b): The dependence of ac-conductivity on the applied	101	
frequency for sphere, branched QDs shape composites and pure		
PMMA, at room temperature.		•
Figure (3.11): The extracted ac-conductivity values for PMMA loaded	102	
with CdSe rod shaped as a function of applied frequency.		
Figure (3.12): Typical fitting of the polynomial equation (3-16) for sample	104	
PMMA loaded with rod shape CdSe.		
Figure (3.13): Show the variation of "s" as a function of log (w) for all	105	
PMMA/QDs loaded samples.		
Figure (3.14): The principle of Quantum Dots Solar Collector (QDSC).	109	•
Figure (3.15): The optical absorption spectra for PMMA composites.	110	
Figure (3.16): The variation of absorption coefficient with different photon	112	
energy for all samples.		
Figure (3.17): The dependence of $(\alpha E)^2$ on photon energy E (eV) for	115	
QDs/PMMA composites with different shapes.		
Figure (3.18): The dependence of $(Ln\alpha)$ on photon energy E (eV) for	116	
different shapes QDs/PMMA composites.		
Figure (3.19): Fluorescence spectra for different shape QDs/PMMA	118	
composites.		
Figure (3.20): Spectral distribution of attenuation coefficient (k) for	121	
different shapes QDs/PMMA composites.		
Figure (3.21): Dependence of UV-irradiation on the absorption spectra of	123	
CdSe sphere nanoparticles immersed in polymer.		

Figure (3.22): Dependence of UV-irradiation on the absorption spectra of	123
CdSe nanorods immersed in polymer.	
Figure (3.23): Dependence of UV-irradiation on the absorption spectra of	124
CdSe branched rods immersed in polymer.	
Figure (3.24): Dependence of UV-irradiation on the absorption spectra of CdSe tetrapod immersed in polymer.	124

.

.