EFFECT OF OMEGA-3 FATTY ACIDS ON GROWING RABBITS PERFORMANCE

By

ESRAA MOHAMED ABD ELMEGEED ALI

B.Sc. Agric. Sc. (Poultry Production), Cairo University, 2008

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Agricultural Science (Poultry Physiology)

Department of Poultry Production Faculty of Agriculture Ain Shams University

Approval Sheet

EFFECT OF OMEGA-3 FATTY ACIDS ON GROWING RABBITS PERFORMANCE

By

ESRAA MOHAMED ABD ELMEGEED ALI

B.Sc. Agric. Sc. (Poultry Production), Cairo University, 2008

This thesis for M.Sc. degree has been approved by:
Dr. Ahmed Mohamed El-Kaiaty
Prof. of Poultry Physiology, Faculty of Agriculture, Cairo University
Dr. Sayed Ahmed Abdel Fattah
Associate Prof. of Poultry Physiology, Faculty of Agriculture, Air
Shams University
Dr. Ibrahim El-Wardany El-Sayed
Prof. Emeritus of Poultry Physiology, Faculty of Agriculture, Air
Shams University
Dr. Ayman Mohamed Hassan
Associate Prof. of Poultry Physiology, Faculty of Agriculture, Air
Shams University

Date of Examination: 1/2/2014

EFFECT OF OMEGA-3 FATTY ACIDS ON GROWING RABBITS PERFORMANCE

By

ESRAA MOHAMED ABD ELMEGEED ALI

B.Sc. Agric. Sc. (Poultry Production), Cairo University, 2008

Under the supervision of:

Dr. Ibrahim El- Wardany El- Sayed

Prof. Emeritus of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Ayman Mohamed Hassan

Associate Prof. of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University

Dr. Samia Zakaria Meshreky

Head of Research of Animal Physiology, Rabbit and Turkey Breeding Research Department, Animal Production Research Institute, Agriculture Research Center, Ministry of Agriculture

ABSTRACT

Esraa Mohamed Abd EL Megeed Ali: Effect of Omega-3 Fatty Acids on Growing Rabbits, Performance. Unpublished Master of Science Thesis, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, 2014.

Eighty weaning rabbits (40 Baladi Black (BB) and 40 New Zealand White (NZW) rabbits) were investigated. They were maintained from weaning at 5 weeks to 13 weeks of age. Rabbits were randomly divided into five treatments (16 animals per treatment, four females and four males per treatment). Each treatment has an average weight of (685gm±10). Animals were assigned to five feeding groups The 1st group was fed the basal diet (control) while the 2nd,3rd, 4th and the 5th groups were fed the basal diet supplemented with 2% fish oil (FO), 2% linseed oil (LO), 1% fish oil and 1% linseed oil, 1% commercial Omega-3 (CO) respectively. All diets were supplemented with 200mg vitamin E/kg as α-tocopherol acetate to protect dietary fatty acid from oxidation.

The results showed that no significant differences between treatments in growth performance, dressing weight, percentages; carcass characteristics of meat, plasma biochemical analysis. Mortality rate, abdominal fat weight, moisture content of meat and lipid peroxidation, were significantly decreased in rabbits that fed different sources of Omega-3. The PUFAs concentration was significantly higher in the meat of treated groups compared with the control group. Dietary omega-3 addition to rabbits diet had a positive effect on humoral immunity response compared with control.

It was concluded that using diet enriched with different sources of Omega-3 PUFAs in growing rabbit's could improve meat quality; increase the omega-3 PUFAs content in meat and enhance the immune response in growing rabbits.

Key words: rabbit, fish oil, omega-3, vitamin E, mortality.

ACKNOWLEDGEMENTS

First of all, all praises and limitless thanks to *Allah* the beneficent and merciful who gave me the capability to work this study.

I would like to express my deepest appreciation and gratitude to **Prof. Dr. Ibrahim El-Wardany El-sayed Hassan,** Professor of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, for suggesting the problem, continued guidance and encouragement during the various stages of this study. His invaluable advices and endlessly patience while writing and revising the manuscript are greatly appreciated.

Hearty thanks and my deep gratitude are due to **Prf. Dr.**Samia Zakaria Meshreky, Head of Research of Animal Physiology,
Department of Rabbit, Turkey and Water Fowl Breeding, Animal
Production Research Institute, Agriculture Research Center for her
valuable supervision, appreciate help, guidance, providing the
facilities, analysis of raw data of this work statistically,
encouragement throughout the different phases of this work and
writing of this thesis. She gave me a lot of her experience.

My deep gratitude is extended to **Dr. Ayman Mohamed Hassan,** Associate Professor of Poultry Physiology, Faculty of Agriculture, Ain Shams University for supervision, encouragement and help during the course of my study.

I would like to express my deepest thanks and gratitude to **Prof. Dr. Ahmad Mohamed Ismail**, Head of Research of Animal Physiology, Department of Rabbit, Turkey and Water Fowl Breeding Department, Animal Production Research Institute, Agriculture Research Center for his encouragement, valuable advice and as he gave me a lot of his experience.

My deep thanks and gratitude is extended to **Dr. Nasra Beder Awadein,** Associate Researcher, Animal Production Research Institute, Agriculture Research Center for her kind help in analysis of fatty acids profile in diets and meat. I truly appreciate her effort.

I would also like to thank all the staff members of the Poultry Production Department Faculty of Agriculture ain Shams Univ.and those of Rabbit, Turkey and Water Fowl Breeding Department, Animal Production Research Institute, Agriculture Research Center for their great help and kind encouragement during this study.

Last but not least, hearty thanks and sincere gratitude for the Souls of my lovely Mother and my dear Father for their praying for my success, continuous support they lovely offered, help and credible encouragement. My deepest gratitude are due to my lovely Brothers, **Gamal and Ibrahim**, and **my kind fiancé** for their support and creating quite atmosphere all the time throughout the different periods of this work.

CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	VI
LIST OF ABBREVIATION	VIII
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	3
1. Fatty acids.	3
1.1. Definition and structure.	3
1.2. Types of fatty acids.	5
1.3. Source of PUFAs.	6
2. Effect of dietary n-3 PUFAs on growth performance.	8
2.1. Body weight.	8
2.2. Feed intake.	11
2.3. Feed conversion ratio (g feed / g gain).	12
2.4. Mortality rate.	12
3. Effect of n-3 PUFAs on carcass characteristics.	13
4. Effect of n-3 PUFAs on abdominal fat.	16
5. Effect of omega-3PUFAs on physical and chemical	18
characteristics of meat.	
6. Effect of omega-3 PUFAs on meat peroxidation (TBA-RS) and	21
vitamin E in meat.	
7. Effect of omega-3PUFAs on meat lipid profile.	25
8. Effect of dietary n-3 PUFAs on blood parametres.	30
9. Effect of omega-3PUFAs on immune response.	31
III. MATERIALS AND METHODS	33
1. Experimental Animals	33
2. Experimental diets	33
3. Housing and Management	34
4. Characteristics investigated	34

4.1. Performance traits	34
4.1.1. Body weight and body weight gain	34
4.1.2. Feed intake	34
4.1.3. Feed conversion	36
4.2. Mortality rate (%)	36
4.3. Carcass traits	37
4.4. Chemical composition of meat (meat analysis)	37
4.5. Physical Characteristics of Meat	38
4.5.1. Water Holding Capacity (WHC) and Tenderness of Meat	38
4.5.2 pH Value	38
4.5.3 Color Intensity	39
4.6 Fatty acids analysis	39
4.6.1.Extraction of the lipids	39
4.6.2.Fatty acids methyl esters	39
4.6.3.Analysis	39
4.7 Blood chemical analysis	40
4.8. Immune response measurements	41
4.8.1. Humoral immune response	41
4.8.1.1.Method of Sheep Red Blood Cells (SRBC's)preparation	41
4.8.1.2. Antibody titer determines method	41
5. Statistical analysis	41
IV. RESULTS AND DISCUSSION	43
1.Productive performance	43
1.1. Live body weight (LBW)	43
1.2. Body weight gain (BWG)	47
1.3. Feed intake (FI)	50
1.4. Feed conversion (FCR)	53
1.5. Mortality rate	57
2. Carcass characteristics	58
2.1. Effect of different PUFAs sources on Pre-slaughter live body	58
weight and carcass traits	

2.2 Effect of different PUFAs sources on chemical composition	60
and physical characteristics of meat	
3. Effect of different dietary sources of omega-3 on fatty acids	65
profile of meat	
4. Effect of different dietary sources of omega-3 on plasma	73
biochemical analysis.	
5. Effect of different dietary sources of omega-3 on humoral	74
immunity of New Zealand and Baladi Black rabbits.	
V. SUMMARY AND CONCLUSION	
VI. REFERENCES	87
ARABIC SUMMARY	

LIST OF TABLES

Fable		Page
1	The experimental treatments	33
2	Composition and Calculated analysis of experimental diet.	35
3	Fatty acid composition of the experimental diets	36
4	Effect of different dietary sources of omega-3 on live body weight of New Zealand White and Baladi Black rabbits during different experimental periods.	45
5	Effect of different dietary sources of omega-3 on body weight gain of New Zealand White and Baladi Black rabbits during different experimental periods.	49
6	Effect of different dietary sources of omega-3 on feed intake of New Zealand White and Baladi Black rabbits during different experimental periods.	52
7	Effect of different dietary sources of omega-3 on feed conversion (feed/gain) of New Zealand White and Baladi Black rabbits during different experimental periods.	55
8	Effect of different dietary sources of omega-3 on carcass traits of New Zealand White and Baladi Black rabbits at 13 weeks of age.	61
9	Breed differences in carcass traits as influenced by different dietary sources of omega-3 fatty acids.	62
10	Sex differences in carcass traits as influenced by different dietary sources of omega-3 fatty acids.	62
11	Significance level (P <values) 13="" age.<="" and="" at="" baladi="" between="" black="" breed="" carcass="" dietary="" different="" effects="" interaction="" new="" of="" omega-3="" on="" rabbits="" sex="" sources="" td="" traits="" treatments,="" weeks="" white="" zealand=""><td>63</td></values)>	63
12	Effect of different dietary sources of omega-3 on chemical composition and physical characteristics of meat.	66
13	Effect of breed on chemical composition and physical characteristics of meat.	67
14	Effect of sex on chemical composition and physical characteristics analysis of meat of male and female New Zealand White and Baladi Black rabbits.	67

15	Effect of different dietary sources of omega-3 on fatty acids profile of meat of New Zealand White and Baladi Black rabbits.	70
16	Effect of breed on fatty acids profile of meat of New Zealand White and Baladi Black rabbits.	72
17	Effect of sex on fatty acids profile of meat of New Zealand White and Baladi Black rabbits.	75
18	Effect of different dietary sources of omega-3 on plasma biochemical analysis of New Zealand White and Baladi Black rabbits.	76
19	Effect of breed on blood plasma biochemical analysis of New Zealand White and Baladi Black rabbits.	77
20	Effect of sex on plasma biochemical analysis of male and female New Zealand White and Baladi Black rabbits.	77
21	Significance level (P <values) 13="" age.<="" analysis="" and="" at="" baladi="" between="" biochemical="" black="" breed="" dietary="" different="" effects="" interaction="" new="" of="" omega-3="" on="" plasma="" rabbits="" sex="" sources="" td="" treatments,="" weeks="" white="" zealand=""><td>78</td></values)>	78
22	Effect of different dietary sources of omega-3 on humoral antibody titers against sheep red blood cells (SRBC) of New Zealand White and Baladi Black rabbits at different days post immunization.	79

LIST OF FIGURES

Figure		Page
1-a	Example of a saturated fatty acid (steearic acid).	3
1-b	Example of a monounsaturated fatty acids.	4
1-c	Example of a polyunsaturated fatty acids.	4
2-a	Example of docosahexaenoic acid, an omega-3 fatty acid.	5
2-b	Example of arachidonic acid, an omega-6 fatty acid.	5
3	The n-3 and n-6 PUFA synthetic pathways.	7
4	Effect of the interaction between different dietary sources of omega-3 and breed on body weight.	46
5	Effect of the interaction between different dietary sources of omega-3 and sex on body weight.	46
6	Effect of the interaction between breed and sex on body weight.	47
7	Effect of the interaction between different dietary sources of omega-3 and breed on body weight gain.	48
8	Effect of the interaction between different dietary sources of omega-3 and sex on body weight gain.	50
9	Effect of the interaction between breed and sex on body weight gain.	50
10	Effect of the interaction between different dietary sources of omega-3 and breed on feed intake.	51
11	Effect of the interaction between different dietary sources of omega-3 and sex on feed intake.	53
12	Effect of the interaction between breed and sex on feed intake.	53
13	Effect of the interaction between different dietary sources of omega-3 and breed on feed conversion.	54
14	Effect of the interaction between different dietary sources of omega-3 and sex on feed conversion	56

15	Effect of the interaction between breed and sex on feed conversion.	56
16	Effect of different dietary sources of omega-3 on mortality rate of New Zealand White and Baladi Black rabbits.	58
17	Effect of different dietary sources of omega-3 on saturated fatty acids of meat.	71
18	Effect of different dietary sources of omega-3 on unsaturated fatty acids of meat.	71
19	Effect of different dietary sources of omega-3 on polyunsaturated fatty acids of meat.	74
20	Effect of the interaction between different dietary sources of omega-3 and breed on humoral antibody titers against sheep red blood cells (SRBC) at 7, 14 and 21 days post immunization.	80
21	Effect of the interaction between different dietary sources of omega-3 and sex on humoral antibody titers against sheep red blood cells (SRBC) at 7, 14 and 21 days post immunization.	80
22	Effect of the interaction between breed and sex on humoral antibody titers against sheep red blood cells (SRBC) at 7, 14 and 21 days post immunization.	81

LIST OF ABBREVIATIONS

AA : Arachidonic acid

ALA : Alfa linolenic acid

ALT : Alanine aminotransferase

AST : Aspartate aminotransferase

BB : Baladi Black

BW : Body weight

BWG : Body weight gain°C : The degree Celsius

C : Control

cm : Centimeter

CLA : Conjugated linoleic acid

d : day

DE : Digestive energy

DHA : Docosahexaenoic acidEPA : Eicosapentaenoic acid

FC: Feed conversion

FCR : Feed conversion ratio

FO : Fish oil g : gram

h : Hour

HDL : high density lipoproteins

Ig : Immuno globulin

III : International unit

IU : International unit

Kcal : Kilo calorieKg : Kilo gramLA : Linoleic acid

LBW: Live body weight

LDL : low density lipoproteins

LO : Linseed oil

MDA : malondialdehyde

M.E. : Metabolizable energy

mg : Milligrammin : Minutesml : Milliliter

mm³ : Cubic millimeter

μg : Micro gramμL : Microliterμm : Micron

MUFAs : Monounsaturated fatty acids

NZW: New Zealand White

P : Probability

PBS : Phosphate buffer solution

pH : Hydrogen ion concentration

ppm : Part per million

PUSFs : Polyunsaturated fatty acids

PTP : Plasma Total Proteins

Pxl : Pixel

RBCs : Red blood cells

r.p.m : Revolution per minuteSFAs : Saturated fatty acidsSRBC's : Sheep red blood cells

TBA-RS: Thiobarbituric acid-reactive substances

USFAs : Unsaturated fatty acids

VLDL : very low density lipoproteins

W : Weight

WHC : Water holding capacity

WOA : Week of age

% : Percent