

Ain Shams University
Faculty of Science
Chemistry Department

Utility of Variable Analytical Methods for Micro Determination of Some Antidepressant ATHESIS

Submitted

By

Emam Ahmed Ali Mohammad

M.Sc. Chemistry (2011)

Submit for the degree of doctor of philosophy in science (Analytical Chemistry)

Chemistry Department

Faculty of Science

Ain Shams University

Cairo- Egypt

2016

Ain Shams University
Faculty of Science
Chemistry Department

Utility of Variable Analytical Methods for Micro Determination of Some Antidepressant ATHESIS

Submitted By

Emam Ahmed Ali Mohammad

Submit for the degree of doctor of philosophy in science (Analytical Chemistry)

This Thesis has been approved for submission by the supervisors

Prof. Dr. Mohamed .F. El-Shahat
Prof. of Analytical and Inorganic Chemistry
Faculty of Science, Ain Shams University
Prof. Dr. Alaa .S. Amin
Prof. of Analytical Chemistry
Faculty of Science, Benha University
Dr. Ahmed.M. Adawi
Expert of Toxicology and Drugs
Director of Beni-Suef lab- Forensic Medical Authority-
Ministry of justice

Head of Chemistry Department Faculty of Science Ain Shams University

Prof. Dr. Ibrahim.H.A.Badr

ACKNOWLEDGMENT

First and foremost thanks are due to Allah, the most beneficent, unlimited and continuous blessing on me, and for all gifts He gave to me.

I wish to express my deepest gratitude and great thanks to Prof. Dr. M. F. El-Shahat Professor of Inorganic and Analytical Chemistry, Chemistry Department, Faculty of Science, Ain Shams University and prof. Dr. Alaa S. Amin. professor of Analytical Chemistry, Chemistry Department and Dean of the faculty of Science, Benha University, for suggesting the problem, supervision, precious suggestion and valuable discussions which were so willingly given throughout this work.

I wish also to express my sincere gratitude and special appreciation to Dr. Ahmed Mohammad Adawi expert of Forensic Chemistry, Medico-legal department, Ministry of Justice and Dr. Ahmed Shahat Ahmed, Associate Professor, Chemistry Department Faculty of Science, Suez University, Suez – Egypt, for sincere supervision, precious suggestion and valuable discussion which were so willingly given throughout this work. My deepest gratitude to all colleagues and staff members of Chemistry Department, Faculty of Science, Ain Shams University

Emam Ahmed Ali

Abstract

This thesis contains three main parts. The first part includes a sensitive spectrophotometric simple and method hydrochloride, determination of Tramadol Mianserin hydrochloride, Fluoxetine hydrochloride, Clomipramine and Dothiepin (Dosulepin) hydrochloride hydrochloride through ion-associates formation with phenol red (PhR), cresol red (CR), bromocresol green (BCG), metanil yellow (MY), methyl orange (MO) and bromothymol blue (BTB). The absorbance of each ion-associate was measured at maximum wavelength. Different factors were studied as pH, temperature and interfering ions to establish the best conditions for the determination. Comparison of the results of the proposed methods with those of official ones and complete validation study were also performed. The second part is based on thin layer chromatography methods for the detection of the above drugs. This method is analytical technique for the separation and identification of drugs due to its simplicity (it requires a less sophisticated apparatus), low cost, and need for minimal sample cleanup.

The third part is spectrophotometric method based on second order derivative for simultaneous determination of Tramadol hydrochloride (TD) and Clomipramine hydrochloride (CLO) in combined dosage form and in some biological samples.

The proposed method was found to be simple and sensitive for the routine quality control application of TD and CLO in biological samples.

The fourth part is spectrophotometeric methods for detection of ultra-traces of some toxic metal ions such as Cu (II), Pb (II), Hg (II) and Cd (II) in post-mortem biological samples. The procedure depends on single-step detection and removal for metal ions based on dithizone (Dz) anchored on mesoporous TiO2 with rapid colorimetric response and high selectivity for the first time. Statistical comparison of the results with the reference method shows excellent agreement and indicates no significant difference in accuracy and precision.

Key words: Tramadol, Mianserin, Fluoxetine, Clomipramine and Dothiepin (Dosulepin) hydrochloride spectrophotometry, ion-associates complexes, thin layer chromatography, Copper, Mercury, Lead, Cadmium and Mesoporous.

Abbreviation	Full name
ВТВ	Bromothymol blue
BCG	Bromocresol green
CLO	Clomipramine hydrochloride
CR	Cresol red
DAD	Diode-array detector
DO	Dothiepin (Dosulepin) hydrochloride
DZ	Dithizone-probe
FESEM	Field Emission Scanning Electron
	Microscopy
FLU	Fluoxetine hydrochloride
CC	0 1 1
GC HPLC HR-TEM	Gas chromatography High performance liquid chromatography High resolution transmission electron
HPLC	High performance liquid chromatography
HPLC HR-TEM LOD LOQ	High performance liquid chromatography High resolution transmission electron
HPLC HR-TEM LOD LOQ MY	High performance liquid chromatography High resolution transmission electron microscope Limit of detection Limit of quantification
HPLC HR-TEM LOD LOQ MY	High performance liquid chromatography High resolution transmission electron microscope Limit of detection Limit of quantification Metanil yellow
HPLC HR-TEM LOD LOQ MY MO	High performance liquid chromatography High resolution transmission electron microscope Limit of detection Limit of quantification Metanil yellow Methyl orange
HPLC HR-TEM LOD LOQ MY MO	High performance liquid chromatography High resolution transmission electron microscope Limit of detection Limit of quantification Metanil yellow Methyl orange Mianserin hydrochloride
HPLC HR-TEM LOD LOQ MY MO MIN PhR	High performance liquid chromatography High resolution transmission electron microscope Limit of detection Limit of quantification Metanil yellow Methyl orange Mianserin hydrochloride Phenol red

CONTENTS

		Page
Aim of the	work	1
1	CHAPTER 1 INTRODUCTION	4
1.1	Sensitivity of spectrophotometric methods	8
1.2	Thin Layer Chromatography	9
1.2.1	Theory of Thin Layer Chromatography	10
1.2.2	Measuring Rf values	12
1.3	Pharmaceutical analysis	13
1.4	Source of information in pharmaceutical analysis	13
1.5	The studied drugs	14
1.5.1	Tramadol Hydrochloride (TD)	14
1.5.2	Mianserin Hydrochloride (MIN)	15
1.5.3	Fluoxetine Hydrochloride (FLU)	16
1.5.4	Clomipramine Hydrochloride (CLO)	17
1.5.5	Dothiepin (Dosulepin) hydrochloride (DO)	18
1.3	Colorimetric determination of some toxic metal	19
	ions in post-mortem biological samples	
2	CHAPTER 2 LITERATURE SURVEY	26
2.1	Review of literature for determination of Tramadol hydrochloride	26
2.1.1	Spectrophotometric methods	26

2.1.2	HPLC methods	28
2.1.3	G C methods	32
2.1.4	Potentiometric methods	34
2.1.5	Capillary electrophoresis methods	35
2.2	Review of literature for determination of	
	antidepressant	37
2.2.1	Spectrophotometric methods	37
2.2.2	HPLC methods	42
2.2.3	G C methods	48
2.2.4	LC-MS methods	51
2.2.5	Capillary electrophoresis methods	54
2.2.6	Potentiometric methods	56
3	CHAPTER 3 EXPERIMENTAL	59
3.1	The experimental condition for visible	
	spectrophotometric Method	59
3.1.1	Materials and reagents	59
3.1.2	Examined substances	59
3.1.3	Reagents	60
3.1.2	Experimental requirements for spectral	62
	measurements	
3.1.2.1	Examined substance solutions	62
3.1.2.2	General reagents	62
3.1.2.3	Buffer solution	63

3.1.2.4	Organic solvents
3.1.2.5	Instruments
3.1.3	Working procedures
3.1.3.1	General Procedure for the determination of
	investigated drugs
3.1.3.2	The optimum conditions for ion-associate
	formation
3.1.3.2. 1	Selection of suitable wavelength
3.1.3.2. 2	Effect of pH
3.1.3.2. 3	Effect of extracting solvents
3.1.3.2.4	Effect of reagent concentration
3.1.3.2.5	Effect of sequence of mixing
3.1.3.2.6	Effect of temperature
3.1.3.2.7	Effect of time
3.1.4	Molecular structure of the ion-associates
3.1.4.1	The molar ratio method
3.1.4.2	The continuous variation method
3.1.5	Influence of foreign ions
3.1.6	Obedience to Beer's law
3.1.7	Analytical applications
3.2	The experimental condition for thin
	layerchromatography (TLC) method
3.2.1	Materials
3.2.2	Examined substances

3.2.3	Reagents	72
3.2.4	Instruments	73
3.2.5	Examined substance solutions	73
3.2.6	Reagents solutions	73
3.2.6 .1	Dragendorff reagent	73
3.2.6. 2	Potassium Iodoplatinate solution	73
3.2.7	General Procedure for the determination of	
	investigated drugs	74
3.2.8	Analytical applications on forensic cases	74
3.2.8.1	Blood extraction	75
3.2.8.2	Urine extraction	75
3.3	The experimental for determination of TD and CLO	75
	Second Derivative Spectrophotometric method	
3.3.1	MATERIALS AND METHODS	75
3.3.1.1	Preparation of Stock Solutions	75
3.3.1.2	Preparation of Working Standard Solutions	76
3.3.2	Wavelength selection	76
3.3.3	Methodology	77
3.3.3.1	Calibration curve of standard TD and CLO	77
3.3.3.2	Determination of TD and CLO in tablets	78
3.3.3.3	Determination of TD and CLO in spiked urine samples	78
3.4	The experimental for Colorimetric determination of	
	some toxic metal ions in post-mortem	

	biological samples	78
3.4.1	Materials	79
3.4.2	Preparation of mesoporous TiO2 and the	79
	chemosensor	
3.4.3	Analyses of ultra-traces level of metal ions	80
3.4.4	Analytical applications on post-mortem blood	81
3.4.4.1	Sample Preparation for Pb (II), Hg (II) and Cd (II)	81
3.4.4.2	Sample Preparation for Copper	81
3.4.5	Analytical applications on post-mortem viscera	82
3.4.6	Instruments	82
4	CHAPTER 4 RESULTS AND DISCUSSION	84
4.1.	Spectrophotometric determination of investigated	
	drugs	84
4.1.1.1	Selection of suitable wavelength	85
4.1.1.2	Effect of pH	88
4.1.1.3	Effect of extracting solvents	91
4.1.1.4	Effect of reagent concentration	94
4.1.1.5.	Effect of sequence of mixing	97
4.1.1.6.	Effect of time	97
4.1.1.7	Effect of temperature	101
4.1.1.8	Effect of other variables	104
4.1.1.9	The stoichiometry of the ion-associates	105
4.1.1.9.1	The molar ratio method	105
4.1.1.9.2	The continuous variation method	108

4.1.1.10	Conditional stability constant (k _f) of the ion-
	associates
4.1.1.11	Influence of foreign ions
4.1.1.12	Obedience to Beer's law and method validation
4.1.1.12.a	Linearity
4.1.1.12.b	Sensitivity
4.1.1.12.c	precision and accuracy
4.1.1.13	Analytical applications
4.1.2	Discussion
4.2	Detection of investigated drugs by thin layer
	chromatography
4.2.1	Detection of TD, DOT and MIN by thin layer
	chromatography
4.2.2	Detection of TD, FLU and DOT by thin layer chromatography
4.2.3	Detection of FLU, DOT and MIN by thin layer chromatography
4.2.4	Detection of CLO, DOT and MIN by thin layer chromatography
4.2.5	Analytical applications on forensic cases
4.2.5.1	Applications on forensic case (blood and urine)
4.2.5.2	Confirmation
4.2.6.	Discussion
4.3	Results and Discussion for determination of TD

	and CLO by Derivative Spectrophotometric	170
4.3.1	Validation of the proposed method	172
4.3.1.1	Linearity (Calibration curve)	172
4.3.1.2	Limit of detection and quantification	172
4.3.2	Precision and accuracy	173
4.3.3	Analytical applications	173
4.4	The Results and discussions for Colorimetric	179
	determination of some toxic metal ions in post-	
	mortem biological samples	
4.4.1	Characterization of TiO ₂ sensor	179
4.4.2	Recognition process of multi metal ions using	
	TiO ₂ sensor	184
4.4.3	Colorimetric detection of Cu (II), Pb (II), Hg (II)	
	and Cd (II) ions	188
4.4.4	Calibration graphs and analytical parameters	192
4.4.5	Reversible metals ion- sensing systems	195
4.4.6	Interference studies	195
4.4.7	Analytical applications	198
REFEREN	CES	199
SUMMAR	Y	215
ARABIC S	SUMMARY	221

LIST OF FIGURES

	Page
Absorption spectra of TD ion-associates with CR,MO	
and MY	86
Absorption spectra of MIN ion-associates with	
MY,MO,CR and BCG	86
Absorption spectra of FLU ion-associates with	
BCG,MY,PHR and BTB	87
Absorption spectra of CLO ion-associates with	
PHR,BCG,MY and MO	87
Absorption spectra of DO ion-associates with CR,PHR	
and MY	88
Effect of pH on TD ion-associates with CR,MO and	
MY	89
Effect of pH on MIN ion-associates with MY,MO, CR	
and BCG	89
Effect of pH on FLU ion-associates with	
BCG,MY,PHR and BTB	90
Effect of pH on CLO ion-associates with PhR,BCG,	
MY and MO	90
Effect of pH on DO ion-associates with CR,PHR and	
MY	91
Effect of extracting solvents on TD ion-associates with	
•	92
	and MY

12	Effect of extracting solvents on MIN ion-associates
	with MY,MO,CR and BCG
13	Effect of extracting solvents on FLU ion-associates
	with BCG,MY,PhR and BTB
14	Effect of extracting solvents on CLO ion-associates
	with PHR,BCG, MY and MO
15	Effect of extracting solvents on DO ion-associates with
	CR,PHR and MY
16	Effect of CR,MO and MY concentration with TD
17	Effect of MY,MO,CR and BCG concentration with
	MIN
18	Effect of BCG,MY,PHR and BTB concentration with
	FLU
19	Effect of PHR,BCG,MY and MO concentration with
	CLO
20	Effect of CR,PHR and MY concentration with DO
21	Effect of time on the stability of TD ion-associates
	with CR,MO and MY
22	Effect of time on the stability of MIN ion-associates
	with MY,MO,CR and BCG
23	Effect of time on the stability of FLU ion-associates
	with BCG,MY,PHR and BTB
24	Effect of time on the stability of CLO ion-associates
	with PHR,BCG,MY and MO