

Ain Shams University Faculty of Engineering Irrigation and Hydraulics Department

RAINFALL-RUNOFF SIMULATION USING DISTRIBUTED HYDROLOGIC MODEL IN SINAI

Thesis submitted to Irrigation and Hydraulics Department Faculty of Engineering, Ain Shams University in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Civil Engineering

By Eng. Azza Ewis Ismail Gad

(B.Sc. in Civil Engineering, Zagazig University)

Supervised by

Prof. Dr. Ahmed Ali Ali Hassan

Professor, irrigation and hydraulics Department, Faculty of Engineering, Ain Shams University

Dr. Ashraf Mohamed El Mostafa

Associate professor, Irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University

Dr. Eman Ahmed Hassan

Associate professor, Water Resources Research Institute (WRRI), National Water Research Center (NWRC), Egypt

Cairo, Egypt 2015

AIN-SHAMS UNIVERSITY FACULTY OF ENGINEERING

RAINFALL-RUNOFF SIMULATION USING DISTRIBUTED HYDROLOGIC MODEL IN **SINAI**

BvAzza Ewis İsmail Gad B.Sc. in Civil Engineering, Zagazig University

EXAMINERS COMMITTEE

Name Title & Affiliation

Signature
Prof. Dr. Gamal Mohamed Kotb
Deputy Director of Water Resources
Research Institute, National Water Research Center.
Prof. Dr. Abdel kawi A. Khalif
Professor of Hydraulics, Irrigation and Hydraulics
Department, Faculty of Engineering, Ain Shams
University.
Prof. Dr. Ahmed Ali Ali Hassan
Professor of Hydraulics, Irrigation and Hydraulics
Department, Faculty of Engineering, Ain Shams
University.

Dr. Ashraf Mohamed El Mostafa.....

Associate professor, Irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University.

Date: 16-2-2015

STATEMENT

This thesis is submitted to Ain-Shams University for the degree of Mater of Science in civil engineering.

The work included in this thesis was carried out by the author in the Irrigation and Hydraulics Department Faculty of Engineering, Ain Shams University.

No part of this thesis has been submitted for a degree or a qualification to any other university or institute.

Date :

Signature:

Name : Azza Ewis Ismail

To

My Mother

My Husband Emad My lovely Children Mohammed and Rodina

RAINFALL-RUNOFF SIMULATION USING DISTRIBUTED HYDROLOGIC MODEL IN SINAI

BY

AZZA EWIS ISMAIL GAD

Abstract

Rainfall-runoff process is complex and non-linear, so estimating rainfall-runoff is an important process for flood estimation. In cases where the historical flow records are not available, it becomes necessary to use another tool such as hydrologic models that incorporates watershed characteristics to predict flow rates and the volume of runoff for the watershed. The distributed model (Gridded Surface-Subsurface Hydrologic Analysis, GSSHA) is used in this research to simulate rainfall-runoff process in wadi El- Melha.

Wadi El- Melha is a sub-basin of Wadi Sudr chosen as a study area to apply the hydrologic model and carry out this research. WadiSudr is one of south-west Sinai wadis and covers a total area of about 600 km² and it drains directly in the Gulf of Suez at Sudr town. Wadi El- Melha covers an area about 26 km² from wadi Sudr and its main stream length is about 5.5 km.

GSSHA is a fully distributed-parameter, processbased hydrologic model that uses finite difference and finite volume methods to simulate different hydrologic processes such as rainfall distribution and interception, overland water retention, infiltration, evapotranspiration, two-dimensional overland flow, one dimensional channel routing, and different methods for modeling the soil moisture profile in the unsaturated zone. The Green and Ampt method (GA) was used to simulate infiltration losses into the unsaturated zone. The watershed topographic and hydrologic properties are represented using 90 mx90 m Cartesian grids for wadi El-Melha. Channel dimensions were specified in the model based on field surveys using Global Positioning System (GPS). The rainfall data was collected and compiled from the available rain gauges in the study catchment. Overland hydraulic properties and soil hydraulic parameters were varied according to spatial combined classifications of soil type and land use maps. Field measurements of soil types and infiltration parameters were used to initially assign model parameters. The parameters were further adjusted through model calibration against available runoff measurements at the catchment outlet.GSSHA model is applied to 5 real storms. These storms are measured during the period from 1992 to 2013. The output hydrograph of the model were compared to the observed flow hydrograph and both visual and statistical comparison between simulated hydrograph and observed hydrograph .Sensitivity analyses were performed to evaluate the impact of model parameters on the simulated hydrographs.

The results of GSSHA model in this study show that the hydrological distribute model is suitable for arid region. It has the ability to predict watershed runoff hydrograph very close to the observed one.

Also, the results show that the channel roughness had significant impact on both the peak flow rate and the time to peak. On the other hand, overland roughness, hydraulic conductivity, and channel hydraulic conductivity had significant impact only on the peak flow rate. Finally, porosity, capillary head and initial moisture content had insignificant impact on either peak flow rate or time to peak.

Keywords: Wadi EL-Melha, GSSHA Model, Sensitivity Analysis, Green&Ampt

ACKNOWLEDGEMENT

At the beginning and end, thanks to Allah

I would like to thank my supervisor Professor Dr. *Ahmed Ali*, Professor of Hydraulics, Irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University, for his invaluable guidance and support.

I would like to express my special thanks to my supervisor Dr. **Ashraf El Mostafa**, Associate Professor of Hydraulics, Irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University, for his generous support and helpful supervision during all the phases of this research.

I would like to express my special thanks to my supervisor Dr. **Eman Ahmed,** Associate professor, Water Resources Research Institute (WRRI), National Water Research Center (NWRC), for her generous support and helpful supervision during all the phases of this research.

I am deeply grateful to my husband *Eng. Emad Hussein* for his support and encouragement. I would sincerely like to thank my lovely children *Mohammed and Rodina*. Words of thanks also go to *my mother* for her continuous support and constant encouragement.

My thanks and gratitude goes to *Dr. Khaled Gaber*, Dr. **Khalil Tamam**, **WRRI**, **NWRC**, for their generous help and invaluable advice.

My thanks are also due to *my colleagues* at the WRRI for their friendship and encouragement.

TABLE OF CONTENTS

ABSTI	RACT	I
ACKN	OWLEDGEMENT	IV
TABLI	E OF CONTENTS	V
LIST C	OF FIGURES	IX
LIST C	DF TABLES	XIII
LIST C	OF ABBREVIATION	XV
LIST C	OF SYMBOLS	XVII
CHAP	TER 1: INTRODUCTION	1
1.1	Background	1
1.2	Classifications of hydrological models	2
1.3	Problem Definition	5
1.4	Research goals	6
1.5	Study Area	6
1.6	Layout of Thesis	8
CHAP	TER 2: LITERATURE REVIEW	10
2.1	Introduction	10
2.2	Hydrologic modeling in arid and semi-arid regions	12
2.3	Delineation of stream networks using digital elevation models (DEMs)	15
2.4	Previous Hydrological studies in the study area	18
2.5	previous studies using hydrological distributed model	21
2.6	previous studies using GSSHA hydrologic model	28
CHAPTER 3 THE STUDY AREA AND DATA DESCRIPTIONS		35
3.1	The study area	35
3.2	Basin Description	36

3.2.1	Climate	38
3.2.2	Land use	38
3.2.3	The basin topography	40
3.2.4	The geological data	41
3.3	Data Description	44
3.3.1	Rainfall and Runoff data	44
3.3.1.1	Rainfall data Preparation	46
3.3.1.2	Storm data	47
3.3.2	Spatial Data	48
3.3.2.1	Digital Elevation Data	48
3.3.3	Infiltration process	50
3.3.3.1	Infiltration measurement	51
3.3.4.	Estimation Methods for Infiltration Rate	53
3.3.4.1.	Green &Ampt infiltration	53
3.3.5	Infiltration Data Analysis	57
3.3.6	Runoff Data	58
3.3.6.1	Estimation of Observed Flow	59
	TER4 MODEL DESCRIPTION AND CODOLOGY	62
4.1	Introduction	62
4.2	WMS Description	62
4.2.1	WMS Modules	63
4.3	GSSHA Description	63
4.3.1	Model Formulation	63
4.3.2	Purpose	64
4.3.3	Model Setup	64
4.3.4	Process Simulated	65

4.3.5	Time step	67
4.3.6	Inputs	69
4.4 ME	THODOLOGY	70
4.4.1	Basin Delineation	70
4.4.2	Development of flow direction and flow accumulation grids	71
4.4.3	Specifying basin outlet and creating streams	73
4.4.4	Defining the basin boundary and computing basin data	74
4.5	Modeling Using GSSHA	74
4.5.1	Grid construction	75
4.5.2	Process selection	78
4.5.2.1	Overland flow	78
4.5.2.2	Infiltration	81
4.5.3	Model parameter assignment	83
4.5.4	Running GSSHA and post-processing	84
Chapter 5 Sensitivity Analysis And Model Application		85
5.1	Model Preparation	85
5.15.1.1	Model Preparation Basin Delineation	85 85
	•	85 85 87
5.1.1	Basin Delineation	85
5.1.1 5.2	Basin Delineation Sensitivity analysis	85 87
5.1.15.25.2.1	Basin Delineation Sensitivity analysis Overland Roughness	85 87 88
5.1.15.25.2.15.2.2	Basin Delineation Sensitivity analysis Overland Roughness Channel Roughness	85 87 88 90
5.1.1 5.2 5.2.1 5.2.2 5.2.3	Basin Delineation Sensitivity analysis Overland Roughness Channel Roughness Hydraulic Conductivity	85 87 88 90 91
5.1.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4	Basin Delineation Sensitivity analysis Overland Roughness Channel Roughness Hydraulic Conductivity Porosity	85 87 88 90 91 92
5.1.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5	Basin Delineation Sensitivity analysis Overland Roughness Channel Roughness Hydraulic Conductivity Porosity Capillary head	85 87 88 90 91 92 94
5.1.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6	Basin Delineation Sensitivity analysis Overland Roughness Channel Roughness Hydraulic Conductivity Porosity Capillary head Initial moisture	85 87 88 90 91 92 94 95

5.5.1	storm (Case1)	98
5.3.1.1	Visual Comparison (case 1)	108
5.3.1.2	Statistical Comparison (case 1)	108
5.3.2 storms	Model application using average parameters for all (case2)	111
5.3.2.1	Visual Comparison (case 2)	114
5.3.2.2	Statistical Comparison (case 2)	114
5.3.3 storms	Model Application using average parameters of 3 (case3)	117
5.3.3.1	Visual Comparison (case 3)	120
5.3.3.2	Statistical Comparison (case 3)	120
5.4	Discussion	123
5.5	Conclusion	124
CHAP	TER6 CONCLUSION AND RECOMMENDATION	125
6.1	conclusion of sensitivity analysis	125
6.2	conclusion of Model application	126
6.3	Recommendations.	127
Refer	ence	128

Appendix A– Cross Sections in the stream channel

LIST OF FIGURES

Figure (1.1) Location map of Wadi EL Melha	7
Figure (3.1) General layout of wadi Sudr and El- Melha catchment	35
Figure (3.2) The Basin Length of El- Melha Catchment	36
Figure (3.3) The slope map for El- Melha Catchment	37
Figure (3.4) The land use map for El- Melha catchment	39
Figure (3.5) Pictures shows some feature of wadi El-Melha	39
Figure (3.6) Digital elevation model for El - Melha catchment	41
Figure (3.7) The superficial geological map showing the distribution of different soil types in Ras sudr region	43
Figure (3.8) Locations of rainfall gauges in El-Melha watershed before (2008).	45
Figure (3.9) Locations of digital Rainfall gauges in El-Melha watershed after (2008)	46
Figure (3.10) Recorded rainfall at gauge R1, February 25, 1992 storm	47
Figure (3.11) data from Melha 4, for April 3, 2011 storm	47
Figure (3.12) Digital Elevation Models (DEMs) of wadi sudr	49
Figure (3.13) Profile view of sinks and peaks in DEM	50
Figure (3.14) Location of infiltration sites in EL-Melha watershed	51
Figure (3.15) Double- ring infiltrometer setup	52
Figure (3.16) Infiltration rate will generally be high in the first stages, and will decrease with time (Adapted from Hillel, 1982)	53

Figure (3.17) Variables in the Green-Ampt infiltration model (Chow, 1988)	54
Figure (3.18) Infiltration into a column of soil of unit cross-sectional area for the Green-Ampt model (Chow, 1988)	56
Figure (3.19) Infiltration rate as a function of time for site no(1)	58
Figure (3.20) Water level recorded by the water level recorder at the watershed outlet (storm 11-3-1994)	59
Figure (3.21) Wadi El- Melha parshall flume	60
Figure (3.22) Chart to estimate flume coefficient	61
Figure (4.1) A flow chart for GSSHA model (after Downer et al., 2002)	67
Figure (4.2) Example of temporal convergence study with hydrograph shifting at 60 and 150 second time step, oscillations at 200 second, and 300 second	69
Figure (4.3) Part of a flow direction and flow accumulation grids. Arrows represent the direction of water flow from one cell to another	72
Figure (4.4) Eight- point pour model	73
Figure (4.5) Digital dams in the 2D grid; (a) original grid, (b) after cleaning digital dam, and (c) after adjusted elevations manually	77
Figure (4.6) Comparison of moisture content distribution modeled by Green &Ampt and a typical observed distribution	83
Figure (5.1) the stream network and basin delineation	86
Figure (5.2) Effect of Overland Roughness parameter on runoff hydrograph	89
Figure (5.3) Effect of Channel Roughness parameter on runoff hydrograph	91
Figure (5.4) Effect of the hydraulic conductivity parameter on runoff hydrograph	92

Figure (5.5) Effect of the porosity parameter on runoff hydrograph	93
Figure (5.6) Effect of the capillary head parameter on runoff hydrograph	95
Figure (5.7) Effect of the initial moisture parameter on runoff hydrograph	96
Figure (5.8) Rainfall distribution for Storm 1994	100
Figure (5.9) Storm 1, March 11, 1994, predicted vs. observed runoff hydrograph	101
Figure (5.10) Rainfall distribution for Storm1992	102
Figure (5.11) Storm 25, February, 1992, predicted vs. observed runoff hydrograph.	103
Figure (5.12) Rainfall distribution for Storm 2011	104
Figure (5.13) Storm 3April, 2011, predicted vs. observed runoff hydrograph	105
Figure (5.14) Rainfall distribution for Storm January 2013	105
Figure (5.15) Storm 9January, 2013, predicted vs. observed runoff hydrograph	106
Figure (5.16) Rainfall distribution for Storm February 2013	107
Figure (5.17) Storm 1 February, 2013, predicted vs. observed runoff hydrograph	107
Figure (5.18) Storm 25, February, 1992, predicted vs. observed runoff hydrograph	112
Figure (5.19) Storm 1, March 11, 1994, predicted vs. observed runoff hydrograph.	112
Figure (5.20) Storm 3 April, 2011, predicted vs. observed runoff hydrograph	113
Figure (5.21) Storm 9January, 2013, predicted vs. observed runoff hydrograph	113