

Quality of Service Control in Wireless Sensor Networks Based on Energy Management

 $\mathcal{B}y$

Eman Mohamed Ahmed Saad Elshahed

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of M. Sc. in Computer Physics

to

Physics Department
Faculty of Women for Art, Science and Education, Ain
Shams University

Faculty of Women for Art, Science and Education, Ain Shams University

Quality of Service Control in Wireless Sensor Networks Based on Energy Management

Eman Mohamed Ahmed Saad Elshahed

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of M. Sc. in Computer Physics

To Physics Department
Faculty of Women for Art, Science and Education, Ain
Shams University

Supervisors

Prof. Dr. Hayam A. Elzahed

Dr. Shahinaz M. Al-Tabbakh

Professor of Solid State,
Physics Department, Faculty of Women for
Arts, Science, and Education,
Ain Shams University.

Lecturer of Computer Applications in Physics Physics Department, Faculty of Women for Art, Science and Education, Ain Shams University.

Dr. Rabie A. Ramadan

Lecturer of Computer Engineering Computer Engineering Department, Faculty of Engineering, Cairo University

Supervision Committee Approval Sheet

Quality of Service Control in Wireless Sensor Networks Based on Energy Management By

Eman Mohamed Ahmed Saad Elshahed

Submitted in Partial Fulfillment of the Requirements for the Degree of M. Sc. in Computer Physics

Approved by:	Signature
Approveu vy.	Signature

Prof. Dr. Hayam A. Elzahed

Professor of Solid State, Physics Department, Faculty of Women for Art, Science, and Education, Ain Shams University.

Dr. Shahinaz M. Al-Tabbakh

Lecturer of Computer Application in Physics Department. Faculty of Women for Art, Science and Education Ain Shams University.

Dr. Rabie A. Ramadan

Lecturer of Computer Engineering Computer Engineering Department, Faculty of Engineering, Cairo University.

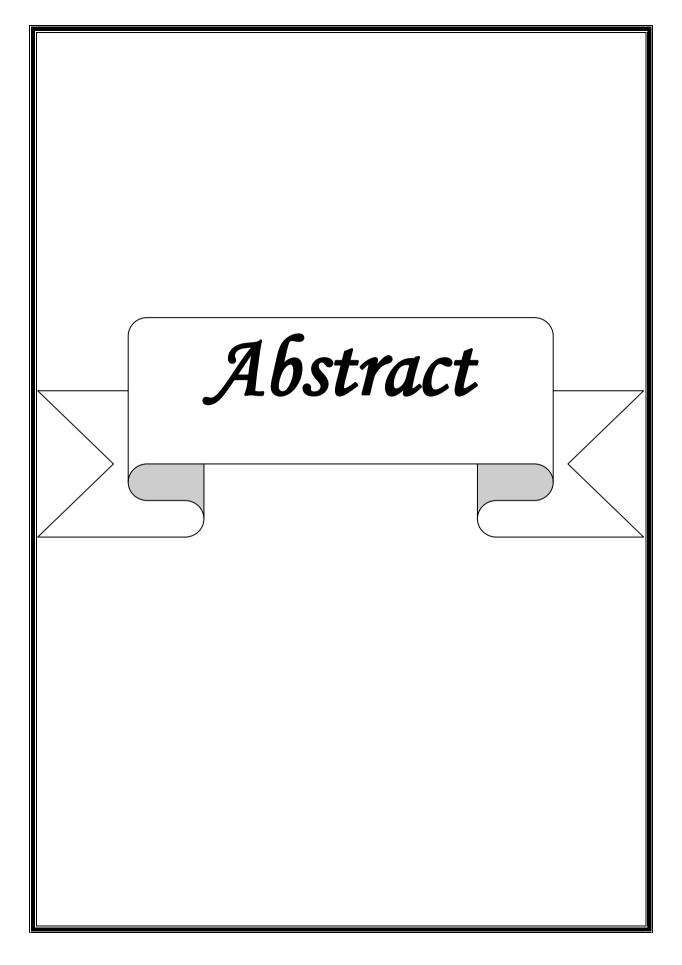
Date of research: / /				
Post Graduate Studies Department				
Approval Stamp	Approval l	Date:	/	/
Faculty Council Approval	University	Council	App	orova
Date: / /	Date:	/ /		

Dedicated To

My Parents &
Husband Parents,
My Sisters & Brother,
My professors,
My Friends,
My HUSBAND
And
My Sweet Daughter

Acknowledgement

First and foremost I am kneeling obsequiousness to **ALLAH** thanking **HIM** for showing me the right way. Without **God** help and blessing I would not have been able to finish this work.


I would like to express my gratitude to **Prof. Dr. Hayam Elzahed** for encouraging me and giving me the guidance and unlimited support to me during my work.

Also, I wish to express all my deepest and sincerest gratitude to **Dr. Shahinaz Al-Tabbakh** and **Dr. Rabie Ramadan** for giving me an opportunity to work under their supervision. I am deeply indebted to them for their enormous patience, guidance, and support throughout the work program.

I'm grateful to the examiners **Prof. Dr. Mahmoud Marie** and **Prof. Dr. Fatthy Amer** for constructive suggestions and valuable comments, which improve the quality of the thesis.

I'm deepest grateful to my uncle **Dr. Mostafa Elshahed** for his fruitful and valuable assistance. He was very generous in his help and time.

Thanks to my dear **husband** for his patience and support. I would like to thank also all my family and my sisters and brother, whose hearts are always with me and whose light my way in this life.

Abstract

The QoS control problem in Wireless Sensor Networks (WSN) is discussed in this study in centralized and distributed network with clustering. The problem takes into consideration many of the performance metrics. For instance, convergence, network lifetime, QoS ratio, average residual energy per node, power depleted nodes, average received messages, and average rejected sensors are taken into consideration. The contributions of this study are:

- (1) This work applies one of the game theory schemes which is Gur game. The Gur game is adapted to control the number of messages to be transferred to the sink node. However, it turns out that the Gur game convergence is taken too much time. Therefore, the study moved forward to the next contribution as follows.
- (2) Adaptive Gur game (AGur) is proposed to speed up the convergence of the Gur game in the network.
- (3) Periodic Gur game (PGur) is introduced to solve another problem noticed when applying Gur game in WSNs which is nodes' energy unbalance. The solution of this problem was inspired from Shuffle.
- (4) Introducing Adaptive Periodic Gur game (APGur) as a combination between AGur and PGur game is investigated in order to enhance the convergence time of PGur game.
- (5) Another game theory is utilized to solve the same problem which is Market Entry Game (MEG). The game seems beneficial and suitable to solve the QoS problem.

(6) Another contribution in this thesis is the consideration of the Centralized and Distributed Networks. In the distributed networks, a clustering techniques is used to divide the network into clusters. Each cluster applies the games on its nodes and the cluster head along with the sink node do the same.

These contributions are implemented and evaluated; the results presented in this study show the efficiency of the proposed methods in enhancing the QoS of the overall WSNs. From results it is concluded that the MEG increases the centralized network lifetime with percentage between 50% and 150% than Gur game and the APGur improves the QoS level with percentage between 0.2 % and 9% than Gur game. In addition, the APGur increases the distributed network lifetime with percentage between 13% and 18% than Gur game and the AGur improves the QoS level with percentage between 3% and 10% than Gur game.

List of Contents

List of Contents

List of	Figure	es	vii
		S	
List of	Symbo	ols and Abbreviations	.xi
СНАР	TER	1. INTRODUCTION	1
1.1	Introd	uction	1
1.2	Histor	rical Survey of Sensor Networks	4
1.3	Hardy	vare Components of Sensor Node	5
1.4	WSN	Challenges	9
1.5	WSN	Applications	.11
	1.5.1	Environmental Monitoring Applications	.11
-	1.5.2	Health Care Monitoring	.13
	1.5.3	Military Applications	.14
	1.5.4	Smart Home Applications	.15
	1.5.5	Structural and Seismic Monitoring	.16
	1.5.1	Industrial Applications	.16
1.6	Proble	em Statement	.17
1.7	Scope	of the Thesis	.19
1.8	Thesis	s Outlines	.20
CHAP	TER	2. LITERATURE REVIEW AND THEORETICAL	,
		ASPECTS	.25
2.1	Qualit	ty of Service for Sensor Networks	.25
2	2.1.1	QoS in Traditional Wired and General Wireless Networks	.27
2	2.1.2	QoS Requirements in WSNs	.29
2.2	Radio	Energy Dissipation Model	.31
2.3	_	y-Efficient Computations and Communications and SN	.32

2.4 The	eoretical Background of Game Theory	34
2.4.1	Game Theory	34
2.4.2	2 Learning Automata	36
2.4.3	Gur Game	38
2.4.4	4 Market Entry Game	40
2.5 Stu	dies in Literature Addressing QoS in WSNs	41
2.6 Clu	stering Algorithms for WSNs	47
CHAPTE	R 3. SOLUTION APPROACHES	56
3.1 Intr	oduction	56
3.2 Cer	ntralized WSNs	57
3.2.1	Gur Game	57
3.2.2	2 Adaptive Gur Game (AGur)	58
3.2.3	Periodic Gur Game (PGur)	63
3.2.4	Adaptive Periodic Gur Game (APGur)	66
3.3 Dis	stributed WSNs with Clustering	68
3.3.1	LEACH Algorithm:	68
3.3.2	2 Applying Gur Game with LEACH Algorithm	72
3.3.3	Applying AGur with LEACH algorithm	73
3.3.4	Applying PGur Game with LEACH Algorithm	73
3.3.5	5 Applying APGur with LEACH algorithm	74
3.4 Ma	rket Entry Game (MEG) and QoS in WSN	75
3.4.1	MEG Solution Approach	76
CHAPTE		
	NETWORK	
4.1 Gui	r Game and its Modifications Simulation Results	
4.1.1		
4.1.2	Periodic Gur Game and Adaptive Periodic Gur Gam Convergence	

	4.1.3	Network Lifetime Evaluation for Gur and AGur	86
	4.1.4	Network Lifetime Evaluation for PGur and APGur	87
	4.1.5	QoS Ratio Evaluation for Gur and AGur	89
	4.1.6	QoS Ratio Evaluation for PGur and APGur	90
	4.1.7	Power Depleted Nodes for Gur and AGur	92
	4.1.8	Power Depleted Nodes for PGur and APGur	94
	4.1.9	Average Residual Energy for Gur and AGur	95
	4.1.10	Average Residual Energy for PGur and APGur	97
4.2	MEG	Simulation Results	99
	4.2.1	Network Lifetime Evaluation	100
	4.2.2	Average Number of Rejected Sensors	101
	4.2.3	Quality of Service Ratio Evaluation	102
	4.2.4	Average Number of Received Messages	103
	4.2.5	Average Number of Depleted Nodes	104
	4.2.6	Average Residual Energy Evaluation	105
СНА	PTER		
		NETWORK	
5.1	Netw	ork Lifetime Evaluation for Gur_L and AGur_L	109
5.2	Netwo	ork Lifetime Evaluation for PGur_L and APGur_L	111
5.3	QoS I	Ratio Evaluation for Gur_L and AGur_L	112
5.4	QoS 1	ratio Evaluation for PGur_L and APGur_L	114
5.5	Powe	r Depleted Nodes for Gur_L and AGur_L	115
5.6	Powe	r Depleted Nodes for PGur_L and APGur_L	117
5.7	Avera	age Residual Energy for Gur_L and AGur_L	118
5.8	Avera	age Residual Energy for PGur_L and APGur_L	120
5.9	Gur C	Game and its Modifications Comparison	122
	5.9.1	Comparison of Lifetime in Centralized Network	122
	5.9.2	Comparison of QoS Ratio in Centralized Network	123

List of Contents

	5.9.3	Comparison of Lifetime in Distributed Network	124
	5.9.4	Comparison of QoS Ratio in Distributed Network	125
СНА	PTER	6. CONCLUSION AND FUTURE WORK	128
6.1	Conc	lusion	128
6.2	Futur	e Work	129
Refer	ences.		130
Published Article		137	
العربي	الملخص		أ

List of Figures

List of Figures

Fígure	e Títle	Page
Fig. (1.1):	Wireless sensor network architecture [3]	2
-	Basic structure of sensor node [7]	
Fig. (1.3):	Smart agriculture [15].	12
_	Detect flooding [16]	
Fig. (1.5):	Health care monitoring [17].	14
-	Military applications [18]	
Fig. (1.7):	Smart home monitoring[20].	15
Fig. (1.8):	Monitoring bridges and roads [18]	17
Fig. (1.9):	Smart factory [16]	17
Fig. (2.1):	A simple QoS model [21]	27
Fig. (2.2):	Radio energy dissipation model [30]	31
Fig. (2.3):	An illustration of the relation between WSN and game th	eory[46]. 36
Fig. (2.4):	The relation between learning automata and the environm	nent [60]. 37
Fig. (2.5):	Typical Gur Reward Function [14].	39
Fig. (2.6):	An example on the automaton with 6 states for the Gur ga	ame39
Fig. (2.7):	A finite state automaton associated with each sensor node	e in the
	Gureen Game control scheme[53]	42
Fig. (2.8):	An illustration of two numbers of yes votes $k < n$ and $k >$	· n
	which would generate identical reward probability[53]	44
Fig. (2.9):	ACK feedback automaton.	45
Fig. (2.10)	: Structure of clustered WSNs [70]	47
Fig. (2.11)	: Hierarchy with grouping parameter G = 4 [77]	51
Fig. (3.1):	The proposed solutions tree	56
Fig. (3.2):	Gur game flow chart	60
Fig. (3.3):	AGur game flow chart.	62
Fig. (3.4):	Sensors States at different periods of time (a) 2ed trial, (b) 200th
	trial, (c) 500th trial [64].	63
Fig. (3.5):	PGur game flow chart	65
Fig. (3.6):	APGur game flow chart	67
	MEG flow chart.	
Fig. (4.1):	Number of active sensors versus time for (a) Gur and (b)	AGur when
	M=1 and $M=3$ and (c) Network without game	
Fig. (4.2):	Number of active sensors versus time for (a) PGur and (b	•
	when $M = 1$ and $M = 3$	
Fig. (4.3):	Comparison of network lifetime for all algorithms (a) wh	
	and (b) when $M = 3$.	87