DEVELOPMENT OF MOLECULAR MARKERS ASSOCIATED WITH ENHANCEMENT OF SOME QUALITY TRAITS IN SUGARCANE (Saccharum spp.)

By SHEREEN KHALED MOHAMED KHALED

B.Sc. (Chemistry and Zoology), Ain Shams University, 2003

A thesis submitted in partial fulfillment of the requirements for the degree of

in
Agricultural Science
(Genetics)

Department of Genetics Faculty of Agriculture Ain Shams University

Approval Sheet

DEVELOPMENT OF MOLECULAR MARKERS ASSOCIATED WITH ENHANCEMENT OF SOME QUALITY TRAITS IN SUGARCANE (Saccharum spp.)

By SHEREEN KHALED MOHAMED KHALED

B.Sc. (Chemistry and Zoology), Ain Shams University, 2003

This thesis for M.Sc. degree has been approved by:

Date of Examination: 16 / 1 / 2011

Dr. Abdel-Wahab Esmail Allam	•••••
Head of Research Emeritus of Genetics, Su	gar Crops Council,
Ministry of Agriculture	
Dr. Mohamed Abdel-Salam Rashid	•••••
Prof. of Genetics, Faculty of Agriculture, Ain S	Shams University
Dr. Eman Mahmoud Fahmy	•••••
Prof. of Genetics, Faculty of Agriculture, Ain S	Shams University
Dr. Fatthy Mohamed Abdel-Tawab	•••••
Prof. Emeritus of Genetics, Faculty of Agricult	ture, Ain Shams
University	

DEVELOPMENT OF MOLECULAR MARKERS ASSOCIATED WITH ENHANCEMENT OF SOME QUALITY TRAITS IN SUGARCANE (Saccharum spp.)

By SHEREEN KHALED MOHAMED KHALED

B.Sc. (Chemistry and Zoology), Ain Shams University, 2003

Under the supervision of:

Dr. Fatthy Mohamed Abdel-Tawab

Prof. Emeritus of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Eman Mahmoud Fahmy

Prof. of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University

Dr. Khaled Adly Khaled

Senior Researcher of Genetics, Department of Breeding & Genetics, Sugar Crops Research Institute, Agricultural Research Center

استنباط دلائل جزيئية مرتبطة بتحسين بعض صفات الجودة في قصب السكر

رسالة مقدمة من شيرين خالد محمد خالد بكالوريوس علوم (كيمياء وحيوان)، جامعة عين شمس، 2003

للحصول على درجة الماجستيرفي العلوم الزراعية (وراثة)

قسم الوراثة كليـــة الزراعــة جامعة عين شمس

صفحة الموافقة على الرسالة

استنباط دلائل جزيئية مرتبطة بتحسين بعض صفات الجودة في قصب السكر

رسالة مقدمة من شيرين خالد محمد خالد بكالوريوس علوم (كيمياء وحيوان)، جامعة عين شمس ، 2003

للحصول على درجة الماجستير في العلوم الزراعية (وراثة)

وقد تمت مناقشة الرسالة والموافقة عليها اللجنة :

•••••	د. عبد الوهاب اسماعيل علام
لمحاصيل السكرية، وزارة الزراعة	رئيس بحوث الوراثة المتفرغ، مجلس ا
•••••	د. محمد عبد السلام راشد
عین شمس	أستاذ الوراثة ، كلية الزراعة ، جامعة ،
••••••	د. ایمان محمود فهمی
عین شمس	أستاذ الوراثة ، كلية الزراعة ، جامعة ،
	د. فتحى محمد عبد التواب
عة ، حامعة عين شمس	أستاذ الوراثة غير المتفرغ، كلية الزرا

تاريخ المناقشة: 1/16 / 2011

جامعة عين شمس كلية الزراعة

رسالة ماجستير

اسم الطالبة : شيرين خالد محمد خالد

عنوان الرسالة: استنباط دلائل جزيئية مرتبطة بتحسين بعض صفات الجودة في قصب السكر

اسم الدرجة : ماجستير في العلوم الزراعية (وراثة)

لجنة الإشراف:

د. فتحى محمد عبد التواب

أستاذ الوراثة غير المتفرغ ، قسم الوراثة ، كلية الزراعة، جامعة عين شمس (المشرف الرئيسي)

د. ایمان محمود فهمی

أستاذ الوراثة ، قسم الوراثة ، كلية الزراعة ، جامعة عين شمس

د. خالد عدلي خالد

باحث أول الوراثة ، قسم التربية والوراثة، معهد المحاصيل السكرية ، مركز البحوث الزراعية

تاريخ التسجيل: 16/ 9 /2007 الدراسات العليا

أجيزت الرسالة بتاريخ / / 2011 ختم الإجازة

موافقة مجلس الجامعة / / 2011

موافقة مجلس الكلية / / 2011

ABSTRACT

Shereen Khaled Mohamed Khaled: Development of Molecular Markers Associated With Enhancement of Some Quality Traits in Sugarcane (*Saccharum* spp.). Unpublished M.Sc. Thesis, Department of Genetics, Faculty of Agriculture, Ain Shams University, 2010.

The aim of this study was to detect some molecular markers associated with sugar content in sugarcane using DNA-based PCR techniques. To assist selection of high sugar content promising lines at a very early stage of the sugarcane breeding program; RAPD, SSRs, ISSRs and R-ISSRs techniques were used for detecting markers associated with sugar content trait. The performances of twenty two sugarcane clones revealed that RAPD, SSRs, ISSRs and R-ISSRs techniques are useful as marker assisted selection for sugar content trait in these clones. Twenty two positive and ten negative markers were obtained using RAPD-PCR analysis. Eight positive and five negative markers were obtained using ISSRs-PCR analysis while using R-ISSRs PCR analysis produced 28 positive markers and 17 negative markers which could use as marker assisted selection for sugar content. Using sorghum SSR primers revealed six positive and seven negative markers. The study confirmed that R-ISSRs technique was more effective analysis and a higher resolution results.

Keywords: Sugarcane, *Saccharum spp.*, SSRs-PCR, RAPD-PCR, ISSRs-PCR, R-ISSRs PCR, yield-related traits, MAS

ACKNOWLEDGEMENT

First, of all my obedience, devotion, deepest thanks and praise are due and fully extended-as always to **Allah**, the greatest and almighty that has created us and bestowed upon us a lot of blessing, which we cannot enumerate and thank enough.

I would like to express my deepest thanks and sincere gratitude to **Prof. Dr. Fatthy Mohamed Abdel-Tawab**, Professor of Genetics, Genetics Dept., Faculty of agriculture, Ain Shams University for his supervision, suggesting the problem valuable advices, unfailing help during the course of investigation and in writing the manuscript. This work benefited greatly from his efforts. I would gratefully acknowledge him.

Great thanks would be expressed to **Prof. Dr. Eman M. Fahmy,** Professor of Genetics, Genetics Dept., Faculty of agriculture, Ain Shams University, for her supervision, unfailing help during the course of investigation and in writing the manuscript kind support and motherly guidance.

I would like to extend my deepest gratitude to **Dr. Khaled Adly Khaled;** Senior Research Professor of Genetics, Sugar crops
Institute, Agriculture Research Center for his supervision, valuable
assistance and his encouragement during this study.

My sincere thanks to every one helped me and supplied me with the facilities during this work especially Dr/ Nouh Eid, Dr/ Sherif Edris and all my colleges in Genetics Department, Faculty of Agriculture, Ain Shams University.

I am deeply indebted to my family, parents, my sister, my brothers and my friends for their love, support and their continuous encouragement and praying for me throughout my life.

CONTENTS

	Page
LIST OF TABLES	i
LIST OF FIGURES	ii
LIST OF ABBREVIATIONS	iii
I. INTRODUCTION	1
II. REVIWE OF LITERATURE	4
1. Sugarcane yield and yield components	4
2. Sugar content	8
3. Molecular markers	12
3.1. Randomly Amplified Polymorphic DNA (RAPDs)	12
3.2. Inter Simple Sequence Repeats (ISSRs)	19
3.3. RAPD-ISSR combination-PCR analysis (R-ISSRs)	20
3.4. Simple Sequence Repeats (SSRs)	21
3.4.1. Transferability of sorghum and sugarcane markers	27
III. MATERIALS AND METHODS	30
a. Materials	30
b. Methods	30
1. Field experiment	30
1.1. Statistical analysis	33
2. Molecular genetic studies	33
2.1. DNA isolation	33
2.2. Randomly Amplified Polymorphic DNA- Chain Reaction	
(RAPDs-PCR)	34
2.3. Inter Simple Sequence Repeats-Polymerase Chain Reaction	
(ISSRs-PCR)	36
2.4. R-ISSR PCR Polymerase Chain Reaction	37
2.5. Simple Sequence Repeats-Polymerase Chain Reaction (SSRs-	
PCR)	39
IV. RESULTS AND DISCUSSION	41

1. Field experiment	41
2. Molecular Markers	43
2.1. Randomly Amplified Polymorphic DNA- Chain Reaction (RAPDs-PCR)	43
2.2. Inter Simple Sequence Repeats Polymerase Chain Reaction	
(ISSRs-PCR)	62
2.3. R-ISSR Polymerase Chain Reaction	64
2.4. Simple Sequence Repeats Polymerase Chain Reaction (SSRs-	
PCR)	74
V. SUMMARY	91
VI. REFERENCES	94
ARABIC SUMMEARY	

LIST OF TABLES

No.		Pages
(1)	The twenty two sugarcane clones numbers and their	22
(2)	parents	32
(2)	Random primers names and their sequences for RAPD-PCR	
	analysis	34
(3)	Primers names and their sequences for ISSR-PCR	
	analysis	37
(4)	Primers names and their sequences for R-ISSR-PCR analysis	38
(5)	SSR primer-pairs codes, their sequences and their required	
	annealing temperature	40
(6)	Means of some cane and sugar traits of the twenty two	
	clones	42
(7)	DNA polymorphism using RAPD-PCR primer OP-A01 with	
	twenty two sugarcane clones	45
(8)	DNA polymorphism using RAPD-PCR primer OP-A04 with	
	twenty two sugarcane clones	47
(9)	DNA polymorphism using RAPD-PCR primer OP-A18 with	
` /	twenty two sugarcane clones	49
(10)	DNA polymorphism using RAPD-PCR primer OP-A19 with	
(- /	twenty two sugarcane clones	51
(11)	DNA polymorphism using RAPD-PCR primer OP-B08 with	
(11)	twenty two sugarcane clones	53
(12)	DNA polymorphism using RAPD-PCR primer OP-B10 with	55
(12)	twenty two sugarcane clones	55
(12)		33
(13)	DNA polymorphism using RAPD-PCR primer OP-B18 with	
	twenty two sugarcane clones	57

(14)	DNA polymorphism using RAPD-PCR primer OP-O10 with
	twenty two sugarcane clones
(15)	DNA polymorphism using RAPD-PCR primer OP-O14 with
	twenty two sugarcane clones
(16)	DNA polymorphism obtained with bulk DNA of high and
	low sugar content groups using seven ISSR primers
(17)	Polymorphic pattern obtained by using RAPD-PCR primers
	OP-A01 and OP-A04 with DNA bulk of high and low sugar
	content trait in sugarcane
(18)	DNA polymorphism obtained from combination of OP-A01
	with six ISSR primers
(19)	DNA polymorphism obtained from combination of OP-A04
	with seven ISSR primers
(20)	Polymorphism pattern of OP-B18 with DNA bulk high (H)
	and low (L) of sugar content groups
(21)	DNA Polymorphism obtained from combination of OP-B18
	with five ISSR primers
(22)	DNA Polymorphism using SSRs primer Xtxp 4 with twenty
	two sugarcane clones
(23)	DNA Polymorphism using SSRs primer Xtxp 8 with twenty
	two sugarcane clones
(24)	DNA Polymorphism using SSRs primer Xtxp 10 with twenty
	two sugarcane clones
(25)	DNA Polymorphism using SSRs primer Xtxp 12 with twenty
	two sugarcane clones
(26)	DNA Polymorphism using SSRs primer Xtxp 19 with twenty
	two sugarcane clones
(27)	DNA Polymorphism using SSRs primer Xtxp61 with twenty
	two sugarcane clones

(28)	The total number of amplified and polymorphic fragments,		
	polymorphism % and the specific markers for sugar content		
	in the clones using RAPD, ISSRs, R-ISSRs and SSR s		
	analysis	88	

LIST OF FIGURES

No.		Pages
(1)	RAPD-PCR Polymorphism patterns with group A (high sugar	
	content) using primer OP-A01, M = 100 bp ladder	44
(2)	RAPD-PCR Polymorphism pattern with group B (low sugar	
	content) using primer OP-A01, M = 100 bp ladder	44
(3)	RAPD-PCR Polymorphism patterns with group A (high sugar	
	content) using primer OP-A04, M = 100 bp ladder	46
(4)	RAPD-PCR Polymorphism pattern with group B (low sugar	
	content) using primer OP-A04, M = 100 bp ladder	46
(5)	RAPD-PCR Polymorphism patterns with group A (high sugar	
	content) using primer OP-A18, M = 100 bp ladder	48
(6)	RAPD-PCR Polymorphism pattern with group B (low sugar	
	content) using primer OP-A18, M = 100 bp ladder	48
(7)	RAPD-PCR Polymorphism patterns with group A (high sugar	
	content) using primer OP-A19, M = 100 bp ladder	50
(8)	RAPD-PCR Polymorphism pattern with group B (low sugar	
	content) using primer OP-A19, M = 100 bp ladder	50
(9)	RAPD-PCR Polymorphism patterns with group A (high sugar	
	content) using primer OP-B08, M = 100 bp ladder	52
(10)	RAPD-PCR Polymorphism pattern with group B (low sugar	
	content) using primer OP-B08, M = 100 bp ladder	52
(11)	RAPD-PCR Polymorphism patterns with group A (high sugar	
	content) using primer OP-B10, M = 100 bp ladder	54
(12)	RAPD-PCR Polymorphism pattern with group B (low sugar	
	content) using primer OP-B10, M = 100 bp ladder	54
(13)	RAPD-PCR Polymorphism patterns with group A (high sugar	
	content) using primer OP-B18, M = 100 bp ladder	56

(14)	RAPD-PCR Polymorphism pattern with group B (low sugar	
	content) using primer OP-B18, M = 100 bp ladder	56
(15)	RAPD-PCR Polymorphism patterns with group A (high sugar	
	content) using primer OP-O10, M = 100 bp ladder	58
(16)	RAPD-PCR Polymorphism pattern with group B (low sugar	
	content) using primer OP-O10, M = 100 bp ladder	58
(17)	RAPD-PCR Polymorphism pattern with group A (high sugar	
	content) using primer OP-O14, M = 100 bp ladder	60
(18)	RAPD-PCR Polymorphism pattern with group B (low sugar	
	content) using primer OP-O14, M = 100 bp ladder	60
(19)	Banding pattern obtained from using seven ISSR primers with	
	bulk DNA of high and low sugar content groups, Marker =	
	1Kbp ladder	63
(20)	Polymorphism pattern produced by primers OP-A01 and OP-	
	A04 with bulk DNA of high and low sugar content, Marker=	
	100 bp ladder	65
(21)	Combination of RAPD primer OP-A01 and different ISSR	
	primers for the detection of molecular markers associated with	
	sucrose content, Marker= 100 bp and 1Kbp ladders	68
(22)	Combination of RAPD primer OP-A04 and ISSR primers for	
	the detection of molecular markers associated with sucrose	
	content, Marker= 1Kbp ladder	70
(23)	Polymorphism pattern produced by using OP-B18 with DNA	
	bulk of high and low sugar content groups, Marker= 100 bp	
	ladder	71
(24)	Combination of RAPD primer OP-B18 and different ISSR	
	primers for the detection of molecular markers associated with	
	sucrose content, Marker= 1 Kbp ladder	73
(25)	Polymorphism pattern obtained from primer Xtxp 4 with	
	group A (high sugar content), Marker= Buc 19 ladder	75