Clinical Utility of CD154 and Monocyte Chemoattractant Protein-1 in Patients with Acute Ischemic Stroke

Thesis

Submitted for the partial fulfillment of M.D. in Clinical and Chemical Pathology

By

Heba M. Adel Tawfik Abou Zaghla M.B.B.Ch & M.Sc. Ain Shams University

Supervised by

Professor/ Sawsan Said Hafez Professor of Clinical and Chemical Pathology Faculty of Medicine-Ain Shams University

Professor/ Mona Mohamed Zaki Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Doctor/ Abeer I. Abd El-Mageed Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Doctor/ Eman Saleh El-Hadidi Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Professor/ Hany Mohamed Amin Aref

Professor of Neurology Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2012

الأهمية الإكلينيكية لقياس MCP-1 CD154

رسالة توطئة للحصول على درجة الدكتوراه فى الباثولوجيا الإكلينيكية والكيميائية

مقدمة من الطبيبة / هبه محمد عادل توفيق أبو زغلة الطبيبة / هبه محمد عادل توفيق أبو زغلة بكالوريوس الطب والجراحة وماجستير الباثولوجيا الإكلينيكية والكيميائية جامعة عين شمس

تحت إشراف

الأستاذ الدكتور/ سوسن سعيد حافظ

أستاذ الباثولوچيا الإكلينيكية والكيميائية كلية الطب – جامعة عين شمس

الأستاذ الدكتور/ منى محمد زكى

أستاذ الباثولوچيا الإكلينيكية والكيميائية كلية الطب – جامعة عين شمس

الدكتور/ عبير إبراهيم عبد المجيد

أستاذ مساعد الباثولوچيا الإكلينيكية والكيميائية كلية الطب ـ جامعة عين شمس

الدكتور/ إيمان صالح الحديدى

الباثولوجيا الإكلينيكية والكيميائية كلية الطب ـ جامعة عين شمس

الأستاذ الدكتور/ هانى محمد أمين عارف

أستاذ الأمراض العصبية كلية الطب – جامعة عين شمس كلية الطب جامعة عين شمس 2012

Acknowledgement

Before all, thanks to ALLAH who granted me the power to accomplish this work.

My deep appreciation and sincere gratitude goes to **Professor**/ **Sawsan Said Hafez**, Professor of Clinical and Chemical Pathology, Ain Shams University, who honored me by her supervision of this work and who unselfishly, spent much of her valuable time and effort trying to get the best out of it. I owe a lot to her meticulous supervision and expert touches.

I am also indebted to **Professor**/ **Mona Mohamed Zaki**, Professor of Clinical and Chemical Pathology, Ain Shams University, for her indispensable guidance and her accurate instructions; her keen advice made a great difference in this work.

My particular and deepest thanks are expressed to **Doctor**/ **Abeer I. Abd El-Mageed**, Assistant Professor of Clinical and Chemical Pathology, Ain Shams University, who provided me a great of her time, continuous advice, directions and effort to fulfill this work. I would like to take this opportunity to thank her for her continuous encouragement and support throughout the whole work.

My sincere gratitude and thanks to **Doctor/ Eman Saleh El-Hadidi**, Assistant Professor of Clinical and Chemical Pathology, Ain Shams University, for giving me the privilege of working under her supervision and for her constant help and encouragement.

I am also greatful to **Professor/ Hany Mohamed Amin Aref**, Professor of Neurology, Ain Shams University, for his valuable help, faithful supervision and great cooperation.

My deepest appreciation and grateful thanks are to **Professor**/ **Aza Abd El-Naser Abd El-aziz**, Professor of Neurology, Ain Shams University, for her kind advices and her great efforts throughout this work. I am truly grateful to **Professor**/ **Manal A. Shams Eldin Eltelbany**, Professor of Clinical Pathology, Ain Shams University, for her close supervision, sincere help, valuable suggestions and continuous encouragement throughout the whole work.

Lastly, I would be remiss if I failed to acknowledge my mother and the soul of my father, the dearest persons in my life, many thanks.

List of Abbreviations

4-AAP	. 4-Aminoantipyrine
AcPAO	. Acetylpolyamine oxidase
	. Analog to digital converter
	. Adenosine diphosphate
	. Acute ischemic stroke
AP	. Alkaline phosphatase
APC	Antigen presenting cells
ASA	. Acetylsalicylic acid
ATP	. Adenosine triphosphate
	. Blood–brain barrier
B-FABP	Brain-fatty acid binding protein
	Cyclic adenosine monophosphate
CAT	. Computed axial tomography
CCchemokine	. Cysteine-cysteine chemokine
CCL2	. Cysteine-cysteine ligand 2
CCR2	. Cysteine-cysteine receptor 2
CCR4	Cysteine-cysteine receptor 4
	Clusters of differentiation 40 ligand
CE	. Cholesterol esterase
CEA	. Carcinoembryonic antigen
	Cytokine expression profiling
CHD risk %	. Coronary heart disease risk percentage
CK-MB	Creatine Kinase MB fraction
CNS	. Central nervous system
CSF	. Cerebrospinal fluid
CT	. Computerized tomography
CTA	. Computed tomographic angiography
DAG	. Diacylglycerol
dC	Delta change
DNA	Deoxyribonucleic acid
DSA	Digital subtraction angiography
ECG	. Electrocardiogram
EDTA	Ethylene diamine tetraacetic acid
ELISA	Enzyme linked immunosorbent assay

List of Abbreviations (Cont.)

ELISpot	. Enzyme-linked immunospot
ESPS-2	European stroke prevention study 2
ETS	. Environmental tobacco smoke
FABP	Fatty acid binding protein
FCM	
FITC	. Fluorescein isothiocyanate
FL	
FS	Forward Scatter
GFAP	Glial fibrillary acidic protein
GP	
	. Glycoprotein IIb/IIIa complex
GPIb-IX-V	. Glycoprotein Ib–IX–V complex
GPO	. Glycerophosphate oxidase
HDL-C	. High density lipoprotein cholesterol
HEPES	. 4-(2-hydroxyethyl)-1-
	piperazineethanesulfonic acid
H-FABP	Heart-fatty acid binding protein
HMG-CoA	. 3-Hydroxy-3-methylglutaryl-CoA
HPLC	. High performance liquid chromatography
HRP	. Horseradish peroxidase
	. Hormonal replacement therapy
hsCRP	High-sensitivity C-reactive protein
	hemorrhagic transformation
	Intercellular adhesion molecule-1
ICH	. Intracerebral hemorrhage
IgM	Immunoglobulin M
IL-1β	
IL2	. Interleukin-2
IP3	. Inositol triphosphate
IQR	. Interquartile range
IS	. Ischemic stroke
KDa	Kilodalton
LACI	Lacunar infarct
LAPSS	Los Angeles prehospital stroke screen

List of Abbreviations (Cont.)

LDL-C	Low density lipoprotein cholesterol
	Lipopolysaccaride
	Left ventricular hypertrophy
	Monoclonal antibody
	Mitogen-activated protein
	Myelin basic protein
	Middle cerebral artery
MCAF	Monocyte chemotactic and activating factor
	Monocyte chemotactic protein-1
MESF	Molecules of equivalent soluble
\mathbf{f}	luorochrome
MFI	Mean fluorescence intensity
	Major histocompatibility complex
MI	Myocardial infarction
MIP-1	Macrophage inflammatory protein-1beta
MMP-2	Matrix metalloproteinases-2
MMPs	Matrix metalloproteinases
MRA	Magnetic resonance angiography
MRI	Magnetic resonance imaging
mRNA	Messenger ribonucleic acid
NDKA	Nucleotide diphosphate kinase A
NDP	Nucleoside diphosphate
	Nuclear factor kappa B
NIHSS	National institute of health stroke scale
NK	Natural killer
NMDA	N-methyl-D-aspartic acid
NMR	Nuclear magnetic resonance
NO	Nitric oxide
	Neuron specific enolase
	Oxford community stroke project
	Polyclonal antibody
	Partial anterior circulation infarct
PDGF	Platelet-derived growth factor
PE	Phycoerythrin

List of Abbreviations (Cont.)

PerCP	Peridinin chlorophyll protein
PGI ₂	
	Phosphatidylinositol (4,5)-bisphosphate
PKC	
PLC	Phospholipase C
PMT	Photomultiplier tube
RNA	
sCD40L	Soluble CD40 ligand
SCYA2	Small inducible cytokine A2
SD	Standard deviation
SIG	Small inducible gene
SMC	.Smooth muscle cells
	Spermine oxidase
SPSS	Statistical package for the social sciences
SS	
	Serum separator tube
TACI	Total anterior circulation infarct
TC	Total cholesterol
TCD	Transcranial doppler
TF	Tissue factor
TG	
TGF	Transforming growth factor
TH1	T helper1
	Transient ischemic attack
TNF	Tumor necrosis factor
TNFSF	Tumor necrosis factor superfamily
TOAST	Trial of organization 10172 in acute stroke
	treatment
Tpa	Tissue plasminogen activator
TRAP	Thrombin receptor activating peptide
TxA_2	Thromboxane A ₂
VCAM-1	Vascular cell adhesion molecule-1
VLDL-C	Very low density lipoprotein cholesterol
VWF	Von Willebrand factor

List of Tables

Table No.	Table Title	Page No.
1	Descriptive statistics of the different studied parameters in all studied patients and patients 'subgroups.	108
2	Descriptive and comparative statistics using Wilcoxon signed rank test for comparison between CD40L and MCP1 before and after 1 week of treatment and comparison between MRS after 1 week and after 3 months of treatment in all patients.	109
3	Descriptive and comparative statistics of different studied parameters between small vessel and large vessel ischemic stroke groups using Student t test for parametric data and Wilcoxon Rank Sum test for non-parametric data.	110
4	Descriptive and comparative statistics of different studied parameters between diabetic and non-diabetic groups using Student t test for parametric data and Wilcoxon Rank Sum test for non-parametric data.	111
5	Descriptive and comparative statistics of different studied parameters between hypertensive and non-hypertensive groups using Student t test for parametric data and Wilcoxon Rank Sum test for non-parametric data.	112

Table No.	Table Title	Page No.
6	Descriptive and comparative statistics of different studied parameters between patients groups with and without coronary heart disease risk (male <35% and female <40%) using Student t test for parametric data and Wilcoxon Rank Sum test for non-parametric data.	113
7	Descriptive and comparative statistics of different studied parameters between carotid stenosis (70% stenosis) and non-carotid stenosis (<70% stenosis) groups using Student t test for parametric data and Wilcoxon Rank Sum test for non-parametric data.	114
8	Descriptive and comparative statistics of different studied parameters between non-recurrent and death groups using Student t test for parametric data and Wilcoxon Rank Sum test for non-parametric data.	115
9	Correlation study using Spearman rank correlation test in all patients.	116

List of Figures

Figure No.	Figure title	Page No.
1	Endothelial injury by risk factors results in lipid and inflammatory cell deposition	9
2	Mechanism of thrombus initiation and thrombus propagation	10
3	CT scan of a patient who has had left middle cerebral artery stroke	24
4	MRI of a patient who has had stroke of the left hemisphere of the brain	25
5	An angiogram showing one of the major blood vessels of the brain that is blocked causing a stroke	26
6	Gelatinase expression after hemorrhagic transformation	32
7	Role of CD40L in the biochemical mechanisms linking cerebrovascular risk factors, inflammation, lipid peroxidation and platelet activation	40
8	Mechanical thrombectomy	44
9	Location of CD40L gene on the long (q) arm of the X chromosome at position 26	54

List of Figures_(Cont.)

Figure No.	Figure title	
10	Secondary structure of CD40L	55
11	Scheme showing trimeric stucture of CD40 ligand	56
12	Role of CD40/CD40L interaction in T cell and macrophage activation	60
13	Role of CD40L in the complex interplay between inflammation, endothelial activation/dysfunction and platelet/coagulative activation	64
14	The building blocks of a flow cytometer	67
15	Flow cytometers use the principle of hydrodynamic focusing for presenting cells to laser beam	
16	One-parameter histogram	70
17	Two parameter histogram	70
18	MCP-1 monomer and MCP-1 dimer	80
19	Three dimensional structure of chemokines	82
20	Shows flow cytometry analysis and gating of platelets	97

List of Figures_(Cont.)

Figure No.	Figure title	Page No.
21	Shows flow cytometry analysis and quantification of gated platelets using phycoerythrin-conjugated anti-CD42a	98
22	Shows flow cytometry analysis and quantification of non-specific binding of isotypic control on platelets	99
23	Shows flow cytometry analysis and quantification of CD40L on platelets.	99

Contents

	Page
Asknowledgement	т
Acknowledgement	
List of Abbreviations	
List of Tables	
List of Figures	IX
Introduction and Aim of the Work Review of Literature	1
The view of Entertaine	4
• Chapter 1: ACUTE ISCHEMIC STROKE	
A. Definition	
B. Epidemiolog	
C. Causes and Classifications of Acute Ischemic Str	
D. Pathophysiological Mechanism of Acute Isch	
stroke	
1. Inflammatory Profile of Atherosclerosis	
2. Mechanism of Intraluminal Thrombosis	
3. Pathophysiological Role of Platelets in AIS	
4. Effects of Acute Ischemic stroke	
E. Risk Factors of AIS	
1. Non-Modifiable Risk Factors	15
a) Age	
b) Gender	
c) Ethnicity and heredity	
d) Prior personal history of stroke or TIA	17
2. Major Risk Factors which are Amenab	
Modification	17
a) Hypertension	17
b) Diabetes mellitus	17
c) Blood lipids	18
d) Smoking	18
3. Other Likely Risk Factors which are Amena	ble to
Modification	19
a) Diet and nutrition	19
b) Physical activity	
c) Obesity	20

Contents (Cont.)

	Page
F. Diagnosis of Acute Ischemic Stroke	
1. History	
2. Clinical Presentation	
3. Physical and Neurological Examination	
4. Investigations	
a) Imaging	
i) Computed axial tomography	
ii) Magnetic resonance imaging	
b) Tests that view the blood vessels supplying the brain	
i) Carotid ultrasound	
ii) Cerebral angiography	
iii) Computed tomographic angiography	
iv) Magnetic resonance angiography	
v) Transcranial Doppler	
c) Test for the underlying etiology	
d) Diagnostic laboratory markers of stroke	
i) C-Reactive protein	
ii) Fibrinogen	
iii) Cell adhesion molecules	
iv) Matrix metalloproteinase-9	30
v) Oxygen free radicals	
vi) Fatty acid binding protein in Stroke	33
vii) Polyamine oxidase and acrolein	
viii) PARK7 and nucleoside diphosphate kinase A	34
ix) Circulating plasma nucleic acid	35
x) Myelin basic protein	36
xi) Protein S100-B subunit	37
xii) Glial fibrillary acidic protein	38
xiii) Soluble CD40 ligand	39
xiv) CD40 ligand	40
xv) Monocyte chemoattractant protein-1	40
G. Prognosis of Acute Ischemic Stroke	41
H. Treatment of Acute Ischemic Stroke	42
1. Thrombolysis	43
2. Mechanical Thrombectomy	44
3. Conventional Medications with Antiinflammatory	
Effects	45
a) Statins	45