Revision stapedectomy

THESIS

Submitted for Partial Fulfillment of Doctoral Degree in Otorhinolaryngology.

By

Wesam Roshdy Mohamed M.B.B.CH, M.Sc

Supervised by

Prof. Dr. Mahmoud Abdel Raouf
Professor of Otorhinolaryngology , Faculty of Medicine ,
Cairo University

Prof. Dr. Hazem Aboul Oyoun
Professor of Otorhinolaryngology , Faculty of Medicine ,
Cairo University

Prof. Dr. Mostafa Hammouda
Professor of Otorhinolaryngology, Faculty of Medicine,
Cairo University,

Faculty of Medicine, Cairo University 2010

بسم الله الرحمن الرحيم

"قالوا سبحانك لا علم لنا إلا

ماعلمتنا إنك أنت العليم

الحكيم" صدق الله العظيم سورة البقرة الآية 32

ACKNOLEDGEMENT

This work would not have been completed without the divine blessings of ALLAH ,THE MERCIFUL AND THE COMPASSIONATE.

I would like to express my deepest gratitude and appreciation to **Prof. Dr. Mahmoud Abdel Raouf**, Professor of Otorhinolaryngology, Faculty of Medicine, Cairo university, for his eminent supervision, valuable instructions and continuous encouragement during all steps of this study.

I would like to thank **Prof. Dr. Hazem Aboul Oyoun**, Professor of Otorhinolaryngology, Faculty of Medicine, Cairo university, for his follow up, constructive criticism and valuable suggestions throughout the whole work.

I am greatly appreciating the efforts of **Prof. Dr. Mostafa Hammouda**, Professor of Otorhinolaryngology,

Faculty of Medicine, Cairo university, to get this work completed in the best way possible. His continous supervision, encouragement, unlimited assistance and support.

I owe a particular debt to **Prof. Dr. Alaa Al Seify**, Professor of Otorhinolaryngology , for his precise guidance and help.

Finally, this work could not have happened without the extraordinary help, passionate assistance and generosity of my beloved family.

ABSTRACT

the intra operative findings that caused the post operative conductive deafness in revision cases, as replacement of prosthesis, cutting of adhesions, a silastic sheet could be placed between the lenticular process and the promontory as well as the loop could be replaced on the stump of the necrosed incus and pushed upwards and a segment of silasting tubing to be threaded on the stump and loop was pushed upwards.

KEY WORDS

Revision

stapedectomy

CONTENTS

INTRODUCTION	1
AIM OF THE WORK	3
REVIEW OF LITERATURE	4
Mechanism of normal hearing Anatomy of middle ear Otosclerosis Histopathology of otosclerosis Etiology and epidemiology Diagnosis and clinical features of otosclerosis Differential diagnosis Clinical examination Management of otosclerosis Surgical technique in revision operations	4 7 12 14 21 29 32 36 48 67
Special considerations and complications in stapes surgery Contraindications	69 86
MATERIAL AND METHODS	89
RESULTS	92
DISCUSSION	113
SUMMARY	120
REFERENCES	122
ARARIC SUMMARY	

LIST OF ABBREVIATIONS

ABG:	air bone gap
CHL:	Conductive hearing loss.
Co2:	Carbon dioxide
CT	Computerized tomography
dB	decibel
KHz	Kilohertz
laser	Light amplification by stimulated emission of radiation
ml	milliliter
mm	millimeter
OR	Operating room
PTA	Pure tone audiogram
SNHL:	sensorineural hearing loss

LIST OF FIGURES

NO.	FIGURE	PAGE
1.	Fig (1) Healthy ear can respond over frequency range of 20 Hz to 20,000 Hz,	5
2.	Fig (2) The ear consists of external, middle, and inner structures. The eardrum and the three tiny bones conduct sound from the eardrum to the cochlea	7
3.	Fig (3) Left malleus. A. From behind. B. From within	8
4.	Fig (4) Left incus. A. From within. B. From the front	8
5.	Fig (5)photo of stapes	9
6.	Fig (6) A. Left stapes. B. Base of stapes, medial surface	9
7.	Fig (7) Chain of ossicles and their ligaments	10
8.	Fig (8) Stapes fixation in otosclerosis. A bony ankylosis (knee) knits the bone of the middle ear to the stapes, preventing normal transmission of sound from the eardrum into the inner ear.	12
9.	Fig (9) A House Wire Prosthesis is shown in the photograph	12
10.	Fig (10) Stapes footplate and anterior crus adjacent to an anterior oval window otosclerotic process seen on the left. There is a small extension of the otosclerosis in the annular ligament extending to the stapedial footplate and causing minimal fixation	15
11.	Fig (11) A solid stapedial footplate wherein the annular ligament has been totally replaced with otosclerosis.	16
12.	Fig (12) Three otosclerotic lesions involving the cochlear capsule. The largest one in the anterior oval window area also is fixing the stapedial footplate. This patient had sensorineural hearing loss and conductive loss caused by stapedial fixation	17

	· · · · · · · · · · · · · · · · · · ·	
13.	Fig (13) left temporal bone shows early, active otosclerosis in the anterior portion of the oval window	19
14.	Fig(14)Percentage change in the mean age of men (above) and women (below) in relation to the time at which stapedectomy was performed. It is	28
	evident, especially in women, that over the past two decades there has been a shift in the age at the	
	time of the operation from that of young adults (20-40 years) to that of the middle-aged groups (40—60 years)	
15.	Fig (15) CT shows: diffuse, bilateral, petrous bone involvement with extensive de-mineralization	34
16.	Fig (16) CT shows: more commonly involves the otic capsule	35
17.	Fig(17)Progressive changes in the configuration of the acoustic reflex with stapedial fixation. A, Healthy reflex with a sustained change in compliance as long as the stimulus is on. B,	40
	Diphasic reflex with an on-off pattern. This is seen in cases of early otosclerotic stapedial fixation. C, As the stapes becomes fixed, the diphasic reflex is replaced by an absent acoustic reflex	
18.	Fig (18) Coronal CT scout image in 51-year-old man shows correct plane for oblique reconstructions along axis of prosthesis	43
19.	Fig (19) A patient with conductive hearing loss. By comparing the normal (A) and abnormal (B) sides on CT scan, the narrowing of the oval window can be clearly appreciated. This results in fixation of the stapes footplate and conductive hearing loss	44
20.	Fig (20) shows otosclerotic focus as ill-defined hyperdense area (arrow) at anterior margin of oval window and anterior part of stapes footplate	45
21.	Fig(21)correctlypositionedpolytetrafluoroethylene prosthesis. Device is correctly inserted on long process of incus (arrow); no gap is seen between footplate plane and tip of prosthesis	46

36.	Fig(36) A 4 mm segment of silastic tubing is slit on one side halfway along its length	106
35.	Fig (35)Resorption of long process	105
34.	Fig(34) prosthesis migrated	103
33.	Fig (33) necrosed tip of incus	101
32.	Fig (32) Bony regrowth in the oval window	99
31.	Fig (31)incus problems	97
30.	Fig (30) diagram shows the incus is necrosed	97
29.	Fig (29) diagram shows that the prosthesis is displaced from oval window fenestrum.	96
28.	Fig(28) operative findings	95
27.	Fig(27) list of patients	94
26.	Fig(26)age group in years	93
25.	Fig(25)onset of hearing affection in monthes	93
	using the fiberoptic argon laser. The tendon of the stapedius muscle and the posterior crus of the stapes had been lasered away first. After mechanical fracture of the anterior crus of the stapes, the superstructure of the stapes was removed. (c) Status after insertion of an appropriately bent platinum band-Teflon piston prosthesis (0.4 mm in diameter)	
24.	Fig (24) Stapedectomy technique in persistent stapedial artery. (a) Middle ear status in persistent stapedial artery. (b) Rosette-shaped perforation of the most posterior part of the stapes footplate	73
23.	Fig (23) Photograph of the stapes replacement prosthesis made of Teflon, which was successfully used by Shea in 1956 for the first stapedectomy. A normal human stapes is shown on the right for comparison	54
22.	Fig (22) shows complete luxation of prosthesis from long process of incus and from stapes footplate. Prosthesis (arrow) is located in posterior part of tympanic cavity	46

37.	Fig (37) The tube is threaded over the wire	106
	loop;the slit engage the shaft.	
38.	Fig (38) follow up of cases	108
39.	Fig(39) unimproved cases	109
40.	Fig(40) Pre operative audiogram	110
41.	Fig(41) Post operative audiogram shows improvement of hearing loss in left ear	110
42.	Fig (42) Pre operative audiogram	111
43.	Fig(43) Post operative audiogram shows the occurrence of sensorineural hearing loss	111
44.	Fig(44) Pre operative audiogram	112
45.	Fig(45) Post operative audiogram shows persistent conductive hearing loss	112
46.	Fig(46)postoperative airbone gap	113

Introduction

Half a century ago, **Shea** (1956) described the microsurgical technique of stapedectomy with the insertion into the oval window of a stapes replacement prosthesis made of Teflon. Thanks to this operation it became possible in most cases to correct the otosclerotic conductive hearing loss, which represents a serious social and professional disability for the affected patients. Since then, otologists throughout the world have used the stapedectomy technique with decisive success.

Over the years, many of these otological microsurgeons have continued to make further improvements to the surgical technique. The retroauricular approach was abandoned in favor of the less invasive end aural approach; today many otological surgeons make almost exclusive use of the transcanal approach through an aural speculum and the operation is often carried out under local anesthesia. Total removal of the footplate was abandoned in favor of the small-caliber footplate perforation, a so-called stapedotomy, in which piston prosthesis with a diameter of 0.3-0.8 mm is used (Hausler, 2004).

Stapes prostheses made of biocompatible materials such as Teflon, platinum, gold and titanium are commercially available, sometimes with ingenious mechanisms for their fixation to the incus. The microsurgical equipment has been expanded and improved. New technique tools, such as particularly fine, low frequency micro drills that spare the inner ear, have

1

been developed. Various laser systems, which allow precise, atraumatic work on the stapes, have been tested and successfully used. The illuminating power, optical quality and user-friendliness of the operating microscope have been improved. All of these advances have made stapedectomy into a textbook example of minimally invasive high-success surgery today (Hausler et al., 1999).

Every time a new technique has been introduced, the new procedure has probably represented a step forward, but observation of a number of treated patients over several years has shown that failures resulting in poor hearing do occur. Patients, who do not obtain optimal hearing improvement following an operation for otosclerosis and patients, who later develop conductive hearing loss will often be offered a revision procedure. In principle, stapedectomy is a once only operation with a definitive hearing gain, which should last for a lifetime. This is indeed often the case. Regardless of the surgical technique used, however, the expected hearing gain sometimes doesn't occur, or after an initially favorable result hearing loss recurs for various reasons. In these cases, secondary hearing improvement can be brought about through stapes revision operation (Dieler et al., 1997).

REVIEW OF LITERATURE

AIM OF THE WORK

This present work aims at studying various factors that cause conductive deafness after stapedectomy and their proper management.