

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics and Communications Engineering Department

Resource Allocation in 3G Wideband CDMA Systems

A Thesis

Submitted in partial fulfillment of the requirements of the degree of Master of Science in Electrical Engineering

Submitted by

Waleed Nabil Youssef Banoub

B.Sc. in Electrical Engineering (Electronics and Communications Engineering) Ain Shams University, 1999

Supervised By

Prof. Dr. Salwa Hussein El Ramly

Department of Electronics and Communications Faculty of Engineering, Ain Shams University

Cairo, 2006

Examiners Committee

Waleed Nabil Youssef Banoub Name: Thesis: Resource Allocation in Wideband CDMA Systems Degree: Master of Science in Electrical Engineering Title, Name and Affiliation Signature Prof. Dr. Magdy Mahmoud Ibrahim Ain Shams University Faculty of Engineering, Department of Electronics and Communications. Prof. Dr. Abd El Rahman Hussein El Sawy Helwan University, Faculty of Engineering, Department of Electronics and Communications. Prof. Dr. Salwa Hussein El Ramly Ain Shams University, Faculty of Engineering, Department of Electronics and Communications.

Date: / / 2006

STATEMENT

This dissertation is submitted to Ain Shams

University for the degree of Master of Science in Electrical

Engineering (Electronics and Communications

Engineering).

The work included in this thesis was carried out by

the author at the Electronics and Communications

Engineering Department, Faculty of Engineering, Ain

Shams University, Cairo, Egypt.

No part of this thesis was submitted for a degree or a

qualification at any other university or institution.

Name

: Waleed Nabil Youssef Banoub

Signature:

Date

: 01 / 08 /2006

3

Curriculum Vitae

Name of researcher : Waleed Nabil Youssef Banoub

Date of Birth : March 22th, 1976

Place of Birth : Cairo

Nationality : Egyptian

First university degree : BSc. in Electronics and Communications

Engineering. Faculty of Engineering. Ain

Shams University

Certification date : July 1999

ACKNOWLEDGEMENTS

I would like to express my appreciation and sincere gratitude to Prof. Dr. Salwa Hussein El Ramly for her huge support, continuous encouragement, helpful supervision and guidance throughout this thesis.

I'm very thankful to my friends and colleagues; Eng. Meriam Khufu, Eng. Tamer Salah and Eng. Mohamed El Nozahy who helped me during the simulation process and gave me a brother's support in different situations through their helpful comments and encouragement during this work.

Thanks to my parents. Their patience, care, and continuous support and encouragement during the completion of this thesis.

Abstract

Resource Allocation in 3G Wideband CDMA Systems

Waleed Nabil Youssef Banoub

Mobile communication has grown tremendously over the last two decades. The percentage of calls from mobile to mobile calls has exceeded all the expectations by all Mobile operators. Modern mobile communication systems will provide enhanced high-speed data, multimedia, and voice services to mobile users. In this work we propose a resource allocation and management scheme tailored for a networks supporting heterogeneous user mix.

In a system with data and multimedia users, Users are elastic in their demands for bandwidth. In this work, we propose a resource allocation and management scheme tailored for systems having heterogeneous users. The algorithm works by checking the SINR in the cell where a minimum E_b/I_o has to be exceeded for all users in the system before taking the decision of accepting or rejecting a new user in the system.

In this thesis, elasticity of user requiring data services is exploited. Users don't necessarily have their maximum requested data rate, users can accept a minimum data rate for the connection instead of being blocked from the cell due to extra interference introduced by their connection at maximum data rate

In this thesis, a resource allocation algorithm was initially introduced and through the simulation results, the amount of improvement in the systems in terms of subscribers' satisfaction and through the increase in call setup success rate which resulted from decreasing number of blocked calls was clearly shown.

A modified resource management algorithm was then introduced which showed much more improvement in system performance compared with the primary algorithm. It was shown that a system with resource management system is far exceeding the unmanaged system in terms of call setup success rate and consequently subscribers' satisfaction.

TABLE OF CONTENTS

CH	CHAPTER 1	
Int	roduction	
1.1	Introduction	1
1.2	Review	2
1.3	Motivation	5
1.4	Overview of the present work	6
1.5	Contribution	7
1.6	Thesis Outline	7
СН	IAPTER 2	9
Ph	ysical Layer Model	
0.4		•
2.1	Introduction	9
2.2	Interfaces to the Physical layer	10
	2.2.1 Interface to MAC Layer	11
0.0	2.2.2 Interface to RRC	11
2.3	Services and functions of the physical layer	12
2.4	Transport Channels	13
2.5	Physical Channels	16
	2.5.1 DPDCH	18
	2.5.2 DPCCH	20
2.6	Uplink Transmitter	22
	2.6.1 CRC attachment	24

	Code block segmentation	24
	2.6.3 Channel Coding	25
	2.6.3.1 Convolutional Coder	25
	2.6.4 Radio frame size equalization	30
	2.6.5 Radio frame segmentation	30
	2.6.6 Rate matching	30
	2.6.7 Transport Channel Multiplexing	31
	2.6.8 Physical Channel Segmentation	31
	2.6.9 Interleaving	32
	2.6.10 Spreading and Modulation	33
	2.6.10.1 Code Generation and allocation	36
	2.6.10.2 Scrambling	39
2.7	Uplink Receiver	41
	2.7.1 Rake Receiver	41
2.8	Conclusion	45
СН	APTER 3	46
Re	source management in 3G Systems	
3.1	Introduction	46
3.2	Previous work and studies	47
3.3	Differentiating services	57
3.4	User Elasticity and Satisfaction Index	61
3.5	Normal Resource allocation for an omni-directional antenna system (Without Resource Management Algorithm)	64
	,	J 1

	3.5.1 Symbol Definitions
	3.5.2 Algorithm
3.6	Adaptive Resource allocation for an omni-directional antenna system
	3.6.1 Symbol Definitions
	3.6.2 The Adaptive Resource Allocation Algorithm
3.7	The Modified Resource Management Algorithm
	3.7.1 Symbol Definitions
	3.7.2 Algorithm Description
3.8	Support of services
3.9	Conclusion
СН	IAPTER 4
Sir	nulation Results
U	
4.1	Introduction
4.2	
	4.2.1 Cell Capacity with different data rates
	4.2.2 Cell Capacity with heterogeneous users
4.3	Simulation time chart
	4.3.1 Variables
	4.3.2 Metrics used in Simulation Results
4.4	Resource Management in an Omni-Directional antenna network
	4.4.1 Simulation Results for Resource management
	in an Omni-directional antenna network

	4.4.1.2 Variation of Number of calls	96
	4.4.1.3 Variation of Call duration	100
	4.4.1.4 Variation of TCH Classes distribution.	105
4.5	Modified Resource management in an Omnidirectional antenna network	111
	4.5.1 Simulation Results for the Modified Resource management Algorithm	113
	4.5.1.1 Variation of min E_b/I_o	113
	4.5.1.2 Variation of Number of calls	118
	4.5.1.3 Variation of Call duration	123
	4.5.1.4 Variation of TCH Classes distribution .	128
4.6	Conclusion	134
СН	APTER 5	135
	APTER 5 nclusions and Future Work	135
		135
		135
Co 5.1	nclusions and Future Work	
Co 5.1	nclusions and Future Work Conclusions	135
Co 5.1	nclusions and Future Work Conclusions	135
Co 5.1	nclusions and Future Work Conclusions	135
Co 5.1 5.2	nclusions and Future Work Conclusions	135
Co 5.1 5.2	Conclusions	135 137

LIST OF FIGURES

Figure 2.1	Interfaces of the physical layer with upper layer	10
Figure 2.2	Frame format of DPDCH	19
Figure 2.3	Frame format of DPCCH	21
Figure 2.4	WCDMA Uplink Transmitter	23
Figure 2.5	Connection diagram of rate 1/2 Convolutional coder	26
Figure 2.6	Connection diagram of rate 1/3 Convolutional coder Spreading and Scrambling of the uplink transmitted	27
Figure 2.7	sequence.	35
Figure 2.8	Code tree for Generation of OVSF Codes	36
Figure 2.9	Configuration of uplink scrambling sequence generator	40
Figure 2.10	Block diagram of a rake receiver	42
Figure 2.11	Rake receiver performance in indoor channel	43
Figure 2.12	Rake receiver performance in indoor channel\	44
Figure 3.1	Relative Performance for Class1 (voice) Traffic	52
Figure 3.2	Relative Performance for Class2 (144Kbps) Traffic	52
Figure 3.3	Relative Performance for Class3 (384Kbps) Traffic Capacity of the 5 MHz channel with voice and data	53
Figure 3.4	users BER plots for homogeneous users with rate=120 and	54
Figure 3.5	30 Kbps	61
Figure 3.6	Flow chart of normal resource allocation for omni- directional antenna system	67
Figure 3.7	Flow chart of resource allocation for omni-directional antenna system	71
Figure 3.8	Flow chart of modified resource management for omni- directional antenna system	76

Figure 4.1	BER plots for homogeneous users with rate = 120 and 30 Kbps	81
Figure 4.2	BER in a System with heterogeneous users	82
Figure 4.3	The Theoretical Poisson distribution for λ =200 Call arrival rate (Poisson distribution) from simulation	84
Figure 4.4	results Call Holding Time (Normal distribution) from simulation	85
Figure 4.5	results	86
Figure 4.6	GrantMax ver E_b/I_o	91
Figure 4.7	Grants – 1 ver E_b/I_o	92
Figure 4.8	Grants – 2 ver E_b/I_o	92
Figure 4.9	Denials ver E_b/I_o	93
Figure 4.10	Average Satisfaction Index ver $E_b/I_o\ \dots \dots$	93
Figure 4.11	CSSR ver E_b/I_o	94
Figure 4.12	Comparison in CSSR with Resource Allocation Algorithm and Without ver $E_b/I_o\ \dots \dots$	94
Figure 4.13	Increase in CSSR ver $E_b/I_o\ \dots$	95
Figure 4.14	GrantMax ver Number of Calls/hour	97
Figure 4.15	Grants - 1 ver Number of Calls/hour	97
Figure 4.16	Grants - 2 ver Number of Calls/hour	97
Figure 4.17	Denials ver Number of Calls/hour	98
Figure 4.18	Average Satisfaction Index ver Number of Calls/hour	98
Figure 4.19	CSSR ver Number of Calls/hour	98
Figure 4.20	Comparison in CSSR with Resource Allocation Algorithm and without ver Number of Calls/hour	99
Figure 4.21	Increase in CSSR ver Number of Calls	99
Figure 4.22	GrantMax ver Average Call Duration	10
Figure 4.23	Grants – 1 ver Average Call Duration	10 ²

Figure 4.24	Grants -2 ver Average Call Duration	102
Figure 4.25	Denials ver Average Call Duration	102
Figure 4.26	Average Satisfaction Index ver Average Call Duration	103
Figure 4.27	CSSR ver Average Call Duration	103
Figure 4.28	Comparison in CSSR with Resource Allocation Algorithm and without ver Average Call Duration	104
Figure 4.29	Increase in CSSR ver Average Call Duration	104
Figure 4.30	GrantMax ver TCH_Classes_Probability	107
Figure 4.31	Grants - 1 ver TCH_Classes_Probability	107
Figure 4.32	Grants - 2 ver TCH_Classes_Probability	108
Figure 4.33	Denials ver TCH_Classes_Probability Average Satisfaction Index ver	108
Figure 4.34	TCH_Classes_Probability	109
Figure 4.35	CSSR ver TCH_Classes_Probability	109
Figure 4.36	Comparison in CSSR with Resource Allocation Algorithm and without ver TCH_Classes_Probability	110
Figure 4.37	Increase in CSSR ver TCH_Classes_Probability	110
Figure 4.38	GrantMax ver E_b/I_o (Modified Algorithm)	114
Figure 4.39	Grants - 1 ver E_b/I_o (Modified Algorithm)	114
Figure 4.40	Grants - 2 ver $\rm E_b/I_o$ (Modified Algorithm)	115
Figure 4.41	Denials ver E_b/I_o (Modified Algorithm) Average Satisfaction Index ver E_b/I_o (Modified	115
Figure 4.42	Algorithm)	116
Figure 4.43	CSSR ver E_b/I_o (Modified Algorithm)	116
Figure 4.44	Comparison in CSSR ver $E_b \! / I_o$ (Modified Algorithm)	116
Figure 4.45	Increase in CSSR ver E_b/I_o (Modified Algorithm) GrantMax ver Number of Calls/hour (Modified	117
Figure 4.46	Algorithm)	119

Figure 4.47	Grants - 1 ver Number of Calls/hour (Modified Algorithm)	119
Figure 4.48	Grants - 2 ver Number of Calls/hour (Modified Algorithm)	120
Figure 4.49	Denial ver Number of Calls/hour (Modified Algorithm)	120
Figure 4.50	Average Satisfaction Index ver Number of Calls/hour (Modified Algorithm)	121
Figure 4.51	CSSR ver Number of Calls/hour (Modified Algorithm)	121
Figure 4.52	Comparison in CSSR ver Number of Calls/hour (Modified Algorithm)	122
Figure 4.53	Increase in CSSR ver Number of Calls/hour (Modified Algorithm)	122
Figure 4.54	GrantMax ver Average Call Duration (Modified Algorithm)	124
Figure 4.55	Grants -1 ver Average Call Duration (Modified Algorithm)	124
Figure 4.56	Grants -2 ver Average Call Duration (Modified Algorithm)	125
Figure 4.57	Denials ver Average Call Duration (Modified Algorithm)	125
Figure 4.58	Average Satisfaction Index ver Average Call Duration (Modified Algorithm)	126
Figure 4.59	CSSR ver Average Call Duration (Modified Algorithm)	126
Figure 4.60	Comparison in CSSR ver Average Call Duration (Modified Algorithm)	127
Figure 4.61	Increase in CSSR ver Average Call Duration (Modified Algorithm)	127
Figure 4.62	GrantMax ver TCH_Classes_Probability (Modified Algorithm). Grants - 1 ver TCH_Classes_Probability (Modified	129
Figure 4.63	Algorithm).	130
Figure 4.64	Grants - 2 ver TCH_Classes_Probability (Modified Algorithm)	130
Figure 4.65	Denials ver TCH Classes Probability (Modified Algorithm)	131