Study of effect of dialysate calcium concentration on cardiac arrhythmia in prevalent hemodialysis patients

Thesis

Submitted for Partial Fulfillment of Master Degree in Internal Medicine

Presented By

Rehab Kassem Abbas Eissa

M.B., *B.Ch*.

Supervised By

Prof. Mohammed Ali Ibrahim

Professor of Internal Medicine and Nephrology

Head of Nephrology Department

Faculty of Medicine, AinShamsUniversity

Dr. Aber Halim Baki

Assistant Professor of Internal Medicine and Nephrology Faculty of Medicine, AinShamsUniversity

Faculty of Medicine
AINSHAMS UNIVERSITY

2015

بسم الله الرحمن الرحيم

"وقل رب زدني علما"

صدق الله العظيم (سورة طه، الآية 114)

Acknowledgement

First, thanks are all due to **Allah** for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

I would like to express my deepest gratitude and highest appreciation to **Professor Dr. Mohammed Ali**Ibrahim, professor of internal medicine and nephrology, head of nephrology department, faculty of medicine, Ain Shams University, for his continuous encouragement, generous support and unlimited help, no word can express my gratitude.

I would like to express my sincere gratitude to **Dr.Aber Halim Baki** assistant professor of Internal Medicine and Nephrology, Ain Shams University, who supervised this work with great interest and who gave me support.

Many thanks to **Dr. Mohamed saeedHassan**, Lecturer of Internal Medicine and Nephrology, Ain Shams University, for his continuous help, valuable suggestions, guidance and encouragement during this work.

I am greatly honored to express my deep gratitude and faithfulness to **Dr. Esam Eldin Hamed,** directory of nephrolgy department in AlAgouza hospital for his continuous help and kind sympathy.

Finally, No words can express my deepest appreciation and gratitude to my family for their never ending support and care.

CONTENTS

	Page
List of Abbreviations	II
List of Figures	V
List of Tables	VI
INTRODUCTION AND AIM OF THE WORK	1
REVIEW OF LITERATURE:	
■ Chapter I: Cardiovascular Disease in ESRD	5
Chapter II: Arrythmia in ESRD	25
Chapter III: Dialysate Composition	50
 Chapter IV: Dialysate Calcium 	75
PATIENTS AND METHODS	88
RESULTS	92
DISCUSSION	109
SUMMARY AND CONCLUSIONS	123
RECOMMENDATIONS	127
REFERENCES	128

List of Abbreviations

ACE-I	Angiotensin Converting Enzyme Inhibitor
ACS	Acute Coronary Syndrome
AES	atrial extrasystole
AF	Atrial Fibrillation
AHD	Atherosclerotic Heart Disease
AMI	Acute Myocardial Infarction
ARBs	Angiotensin Receptor Blockers
AVC	Aortic Valve Calcification
AVC	Aortic valve calcification
BD	bicarbonate dialysis
BP	blood pressure
Ca2+	Ionized calcium
CAD	Coronary Artery Disease
CBC	complete blood picture
CHF	Congestive Heart Faliure
CKD	Choronic Kidney Disease
CVD	Cardiovascular Disease
ECG	Electrocardiographic

ESRD	End-Stage Renal Disease
GN	glomerulonephritis
HCV	hepatitis C virus infection
HD	Hemodialysis
HTN	Hypertension
IDH	intradialytic hypotention
IHD	Ischemic Heart Disease
K/DOQI	Kidney Disease Outcomes Quality Initiative
K+	Potassium
LVH	Left Ventricular Hypertrophy
LVPs	Late ventricular potentials
MAC	Mitral annular calcification
Mg	Magnesium
MI	Myocardial Infarction
Na+	sodium
NO	nitric oxide
PTH	parathyroid hormone
P-wave SAECG	P-wave signal-averaged
	electrocardiogram
QTc	Corrected QT dispertion
QTd	QT dispertion

RRT	Renal Replacement Therapy
SCA	sudden cardiac arrest
SCD	sudden cardiac death
SD	standard deviation
TPN	Total Parentral Nutrition
USRDS	United States Renal Data System
VES	ventricular extrasystoles
VHD	Valvular Heart Disease

LIST OF FIGURES

Fig.	Title	Page
1.	Mechanism of hypotension when using low-sodium dialysate	54
2.	Effects of high - sodium dialysate	55
3.	Examples of sodium profiling regimens	58
4.	Individualization of Dilysate Calcium	79
5.	Serum calcium during and after dialysis with a high dialysate calcium bath	85
6.	Shows Gender of patients included in the study.	92
7.	Etiology of ESRD in studied patients	94
8.	Risk factors for QTc prolongation	95
9.	QTc (msec) of patients before dialysis and every one hour	99

List of Tables

Table No.	Title	Page
1.	Risk Factors for Cardiovascular Disease in Kidney Disease	7
2.	Usual composition of dialysate	51
3.	causes of hyperkalemia in ESRD patients	63
4.	Causes of hypokalemia in ESRD patients	66
5.	Adverse systemic consequences of metabolic acidosis	71
6.	Potential advantages and disadvantages of different components of the dilysate	74
7.	Potential advantages and disadvantages of different dialysate calcium concentrations	87
8.	Relation of gender with abnormal QTc using dialysate 1.25mmol/l	93
9.	Relation of gender with abnormal QTc using dialysate 1.5mmol/l	93
10.	crosstab for prolonged QTc and its risk factors	95
11.	mean of systolic and diastolic blood pressures (mmHg) before and after sessions	97
12.	Number of patients with hypotensive epiodes	97
13.	Laboratory data of all patients	98
14.	Ionized Ca and K before and after dialysis sessions	99
15.	QTc (msec) of patients before dialysis and every one hour	100
16.	Paired T test between QTc before session and every hour through the session using Ca dialysate 1.25mmol/L	101
17.	Paired T test between QTc before session and every hour through the session using Ca dialysate 1.5mmol/L	102
18.	QTc readings either within normal range or not before and after dialysis	103
19.	Important correlations with QTc length in Ca dialysate 1.25 mmol/l.	103
20.	correlation between level of K (before and after sessions) and QTc after session using dialysate 1.5 mmol/l	105
21.	incidence of heart rhythm disorders in both types of dialysate	106

Introduction & Aim of the Work

INTRODUCTION

Cardiovascular mortality is considered the main cause of death in patients receiving dialysis and is 10 to 20 times higher in such patients than in the general population (**Dinanda et al., 2009**).

It is appreciated and accepted that this mortality may be due in part to the presence of excess vascular calcification, particularly in the form of extensive coronary artery calcification, which can be observed even in very young dialysis patients (**Behdad et al., 2012**).

Published guidelines suggest that calcium dialysate concentrations should be lowered as a means of controlling vascular complications and soft tissue calcification. However, this adjustment is likely to worsen the prolongation of QT intervals, which has been acknowledged as a source of increased risk for ventricular tachyarrhythmias and sudden death. The clinical trials showed that low calcium concentrations in dialysate can be a promoter of arrhythmias and are associated with increased risk for sudden cardiac arrest (**Franklin 2011**).

There is no consensus regarding the optimal dialysate calcium concentration during haemodialysis. Low dialysate calcium concentration may predispose to acute arrhythmias, whereas high dialysate calcium concentration increases the long-term risk of soft tissue calcifications (Gianmario et al., 2011).

The choice of the dialysate calcium will depend on several factors, including parathyroid hormone status and vitamin D status, type and severity of concomitant bone disease, presence or absence of arterial calcification, dietary habits, therapeutic treatment and dialysis modality. From a practical point of view, a relatively high dialysate calcium concentration in the range of of 1.50-1.75 mmol/L (3.0-3.5)mEq/L) should probably be preferred in haemodialysis patients with high serum PTH levels who are not prescribed calcium-based phosphate binders or high doses of active vitamin D sterols, and in those who are receiving a calcimimetic. In those who are treated with high doses of calcium-based binders and/or active vitamin D derivatives or who have a very low serum PTH level, the optimal dialysate calcium concentration is probably lower, of in the 1.25-1.50 mmol/L (2.50-3.0)range mEq/L)(Drüeke and Touam 2009).

AIM OF THE WORK

The aim of the study is to assess the possible effect of dialysate calcium concentration on cardiac arrhythmia in prevalent hemodialysis patients.

