ROLE OF INTERVENTION RADIOLOGY IN BENIGN BONE TUMOURS

Essay
Submitted in partial fulfillment of the requirements for the
Master degree in Radiodiagnosis
By

Wessam Mostafa Mohamed (M.B.B CH)

Under Supervision of

Prof. Dr. Ahmad Sami Saeed
Professor of Radiodiagnosis & Intervention Radiology
Faculty of Medicine
Cairo University

Dr. Nagi Nabil Khatar
Lecturer of Radiodiagnosis
Faculty of Medicine
Cairo University

Faculty of Medicine Cairo University

ABSTRACT

Interventional radiology has an important role on benign bone tumours involved in the treatment of the patient(therapeutic role) as well as the diagnosis of disease (diagnostic role). It offers an alternative to the surgical treatment of many conditions and can eliminate the need for hospitalization, in some cases

Image-Guided Percutaneous Biopsy becoming an increasingly accepted modality for initial biopsy in most musculoskeletal tumors. All biopsies planned in consultation with the referring orthopedic surgeon. Needle pathway decided on the basis of the expected definitive treatment to avoid inter-compartmental contamination, to minimize the amount of biopsy tract that removed at the time of definitive surgery and to avoid neurovascular structures. (James S. Jelinek et.al., 2002)

There are many therapeutic roles of intervention radiology on benign bone tumors like Percutaneous thermal ablation includes (Radio-frequency, Microwave or Laser photocoagulation ablations)-cryoablation – cementoplasty(verebroplasty) – selective transcatheter arterial embolization – direct Percutaneous intra-tumoural injections and adjuvants like ethanol.(Erkan Y.et al., 2002)

Key ward:-

- Benign bone tumours
- Clinical and radiologic features
- Diagnostic & therapeutic role of intervention radiology

Acknowledgement

First of all, I would like to thank Allah for helping me to finish this work. I would like to express my sincere gratefulness to Prof. Dr.Ahmad Sami Saeed, Professor of radio-diagnosis and intervention radiology, Cairo University, for his great help and care in performing this essay in the best way. I would also like to thank Dr.Nagi Nabil khatar, Lecturer of Radio-diagnosis, Cairo University, for helping me and giving me the urge to finish the essay in a satisfactory way. I also like to thank my family for the help they offered me.

TABLE OF CONTENT

TOPIC PAG	ЭE
LIST OF FIGURES1	
LIST OF ABBREVIATIONS2	
INTRODUCTION AND DEFINITIONS3	
BENIGN BONE TUMOURS	
Classification of Benign Bone Tumours5	
Clinical presentation of Benign Bone Tumours16	
INTERVENTION RADIOLOGY OF BENIGN BONE TUMOURS	•
(I) Diagnostic Role (Imaged guided percutaneous biopsy)64	
(II)Therapeutic Role	
- Percutaneous thermal ablation	
(Radiofrequency ablation)74	
(Microwave ablation)86	
(Laser ablation)91	
- Cementoplasty / Vertebroplasty101	
- Selective and Super-selective transcatheter embolization114	ŀ
- Other procedures	
DISCUSSION125	
SUMMARY AND CONCLUSION133	
REFERENCES 136	

LIST OF FIGURES

Fi	ig. No.	Title	Page No.
1.		Locations of benign bone tumours.	10&11
2.		Plain film of femoral shaft osteoid osteoma	19
3.		CT cuts showing osteoid osteoma nidus	20
4.	(a,b,c)	Plain film showing osteoblastoma	23
5.	• • •	CT showing osteoblastoma	24
6.		Plain film for different sites of chondromas	25
7.		Plain film show lower femoral enchondroma	28
8.	(a,b)	Plain film showing osteochondromas	32
9.		Plain film of chondromyxoid fibroma	34
10.		Plain radiograph of chondroblastoma	37
11.		Plain film shows ABCs	41
12.		MRI of right pubic bone ABC	42
13.		left Proximal humerous solitary bone cyst	45
14.		plain radiographs of fibroxanthoma	47
15.		Haemangioma of the dorsal vertebrae	50
16.	(a,b)	Gaint cell tumour in different locations	54
1 <i>7</i> .		Plain radiograph shows (EG) of ribs and skull	58
18.	(a,b)	Plain film of fibrous dysplasia	61
19.		8-gauge trephine needle for bone biopsy	66
20.		Different types of bone biopsy needles	67
21.		Pathway of percutaneous bone biopsy	70
22.		Various radiofrequency (RF) electrodes	79
<i>2</i> 3.		Procedure & Technique of RF ablation	82
24.		Procedure & Technique of RF ablation	83
<i>25</i> .		Microwave device	88
<i>26</i> .		LASER system and aplication set	94
27 .		Application of Laser photocoagulation	97
28.		Optical fiber placement of laser	98
29.		Procedure of ILP	99
<i>30</i> .		Materials for percutaneous cementoplasty	104
31.	(a,b,c,d)	Technique of cementoplasty in angioma	109
<i>32</i> .	(a,b,c)	Opacification of bone in cementoplasty	110
<i>33</i> .		Cement leakage	112
<i>34</i> .	(a,b)	Selective embolization of pelvic ABCs	119

١

LIST OF ABBREVIATIONS

• CT : Computed Tomography

• MRI : Magnetic Resonance Imaging

• US : Ultrasonography

• PET : Positron Emission Tomography

• SBCs : Simple Bone Cysts

• ABCs: Aneurysmal Bone Cysts

• FCD : Fibrous Cortical Defect

• NOF : Non Ossifying Fibroma

• GCT : Gaint Cell Tumuors

• EG : Esinophilic Granuloma

• OCE : Osteo-Cartilagenous Exostosis

• MHOCE :Multiple Hereditary Osteo-cartilagenous Exostosis

• CM ,MM :Centimeter and millimeter

• RFA: Radio-Frequency Ablation

• C1,C2: 1st cervical vertebra, 2nd cervical vertebra

• MWA: Micro-Wave Ablation

• ILTT: Interstitial Laser Induced Thermotherapy

• ILP : Interstitial Laser Photocoagulation

• PMMA: Polymethylmethacrylate

• TAC: Trans-Catheter Arterial Embolization

• AVF : Arterio-Venous Fistula

• PVA: Poly-vinyle Alcohol

• PEI : Percutaneous ethanol injection

Introduction and definitions

A Tumor: is a lump or mass of tissue that forms when cells divide uncontrollably. For most bone tumors, the cause is unknown. A growing tumor may replace healthy tissue with abnormal tissue. It may weaken the bone, causing it to break (fracture). Aggressive tumors can lead to disability or death, particularly if signs and symptoms are ignored. (American Academy of orthopedic surgeons, 2004).

A Bone Tumor: is an overgrowth of cells within the bone. These cells could arise from cells normally present in the bone or other times can arise from the proliferation of cells from other sites of the body. For reasons that aren't well understood, these cells grow abnormally and form a "tumor". One very important question to ask regarding a bone tumor is whether it is benign or malignant (Timothy B. Rapp et al., 2007).

A Benign Bone Tumor: by definition is not life threatening. Nonetheless, many benign bone tumors can be aggressive and cause problems to the affected bone and surrounding joint. These effects may cause significant long-term effects on the function of the affected limb, Benign bone tumors may also cause the bone to constantly ache and may weaken it to the point that it breaks. Other benign bone tumors are "incidental findings", or are discovered on an x-ray taken for an unrelated problem. Many of these benign bone tumors do not cause symptoms, (Timothy B. Rapp. Et al., 2007)

Fortunately, the majority of tumors that originate in the bones are benign, meaning very unlikely to spread from its original site to a new location. On contrary to what most people expect, benign bone tumors occur most often in people less than 30 years old. Most are discovered in children, while their skeletons are still growing. These tumors are often strongly influenced by the hormones that stimulate normal growth. As a result, many benign tumors actually stop growing once a child reaches skeletal maturity (i.e. when bones stop growing in length). This usually occurs between the ages 14-16 in girls and the ages of 16-19 in boys. (Cleveland Clinic, 2008)

The management of patients with bone tumours requires consideration of many factors: (Afshin Gangi, X Buy et al., 2007)

- Histology of the tumours with differentiation of benign and malignant tumours
- Careful evaluation of the patient's general condition.
- An understanding of the disease process.
- An appreciation of the degree of bone destruction.
- A working knowledge of available treatment options that required.(Afshin Gangi, X Buy et al., 2007)

Benign Bone Tumors

Benign bone tumors almost never metastasize and are best classified by the matrix which the tumor cells produce such as bone, cartilage, fibrous tissue, fat or blood vessels. Some of these tumors can be described as 'aggressive' because they may recur locally after removal (resection). It is very important to determine whether a tumor is benign or malignant to avoid over or under treatment of the patient. (American Academy of orthopaedic surgeons, 2004)

Classification of benign bone tumours according to (David W. Stoller, 2004)

• Osteoblastic tumours:

(osteoid osteoma, osteoblastoma)

• Cartilaginous tumours:

(enchondroma, osteochondroma, chondroblastoma, chondromyxoid fibroma)

• Fibrous tumours:

(fibrous dysplasia, fibrous histocytosis of bone)

• Miscellaneous tumours & tumour like lesions:

(gaint cell tumours, aneurysmal bone cyst, inter-osseous haemangioma, unicameral bone cyst, interosseous lipoma).

Other Classifications:

The American Academy of Orthopaedic Surgeons (AAOS) says common benign tumors include:

- Osteochondroma, Fibrous dysplasia, Giant cell tumor, unicameral bone cyst or (solitary bone cyst), Osteoid osteomas. Benign cartilaginous tumors are some of the most common lesions affecting the skeletons of children, These include (exostoses, enchondromas, periosteal chondromas, chondromyxoid fibroma and chondroblastoma).(American Academy of Orthopaedic Surgeons, 2004)

Classification According to tumor Aggressiveness: (Timothy B. Rapp. 2007).

Benign "Non-Aggressive" Bone	Benign "Aggressive" Bone
Tumors	Tumors
- Osteoid osteoma	- Fibrous Dysplasia
- Unicameral (simple) bone cyst	- Giant Cell Tumor
- Hemangioma of bone	- Osteoblastoma
- Intra-osseous ganglion cyst	- Chondroblastoma
- Osteochondroma	- Anuerysmal Bone cyst
- Exostoses	
- Enchondroma	
- Non-ossifying fibroma	
- Chondomyxoid Fibroma	
- Periosteal-Cortical Desmoid	

Classification of primary tumours of bone according to (David Sutton et al., 2003)

Tumors arise from skeletal tissue:

- bony origin (bone island, osteoid osteoma, osteoblastoma)
- cartilagenous origin (chondroma,chondroblastoma, chondromyxoid
 Fibroma)
- fibrous origin (fibrous cortical defect, non ossifying fibroma, fibromatosis, desmoblastic fibroma)
- gaint cell containg (gaint cell tumour, aneurysmal bone cyst, brown tumour

Tumors arise from other tissues:

- Blood vessels (haemangioma, haemangiomatosis, vanishing bone diseas, haemangiopericytoma)
- Nerves (neurofibroma, neuroliemmoma)
- Fat (lipoma)

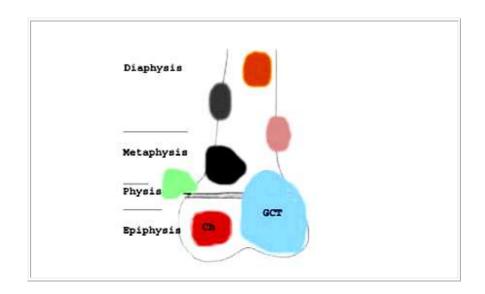
Tumors of no known origin:

- (Solitary bone cyst)

Non neoplastic tumors:

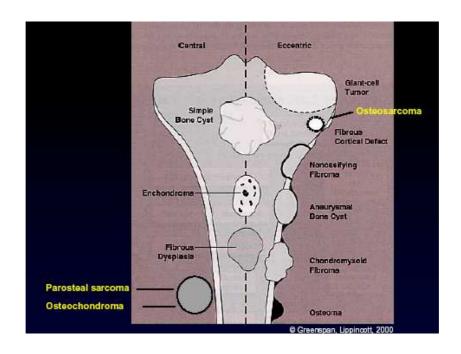
- (histiocytosis, hydatid, hematoma, infarction, brodie's abscess)

The following are important parameters to be consider in the evaluation of benign bone


tumors: (Helliwell TR. et al., 1999)

- 1-Age: (probably the most important clinical clue):
 - 0-10 ys. : simple bone cyst, eosinophilic granuloma.
 - 10 20 ys.: non-ossifying fibroma, fibrous dysplasia, simple bone cyst, aneurysmal bone cyst, osteochondroma (exostosis), osteoid osteoma, osteoblastoma, chondroblastoma, chondromyxoid fibroma.
 - 20 40 ys. : enchondroma, giant cell tumor.
 - 40 ys. & above : osteomas.
- 2-Skeletal Location: (while many lesions favor certain bones, some tumors almost exclusively occur at specific sites)(Table-2)

Lesions	Most common skeletal sites
Non-ossifying fibroma	Metadiaphyseal regions of the tibia and distal femur (80%).
Simple bone cyst	The vast majority of SBCs is found in the proximal humerus (55%) and proximal femur (20%).
Chordoma	Base of the skull or sacrum (90%)


Chondroblastoma	Long bones(knee, proximal humerus)-(70%).		
Giant cell tumor	Knee area, distal radius (65%).		
Enchondroma	Small bones of the hands and feet (60%). This is in fact the commonest tumor at these sites.		
Fibrous dysplasia	Femur, tibia, skull and ribs		
Osteochondroma	Knee area, proximal humerus, pelvis		
Osteoblastoma	Spine (30%), mandible, long bones		
Aneurysmal bone cyst	Any bone; common in the spine		
Chondromyxoid fibroma	Knee area (30%), pelvis, small bones of the feet		
Hemangioma	Spine, craniofacial bones		

3-**Site of Long Bone Involvement:** (most primary bone tumors have favored sites within long bones; this may provide a clue to diagnosis.

(Figure-1a)-sites of long bone involvement.(Helliwell TR. et al., 1999)

(Table - 3)Typical Anatomic Regional Location of Benign Bone Tumors: (Figure-1A&1B)						
Tumor	Epiphysis	Metaphysis	Diaphysis			
Osteoblastoma	Rare	Most common	Uncommon			
Osteoid osteoma	Uncommon	Common	Common			
Giant-cell tumor	Most common	Rare	Extremely rare			
Chondroblastoma	Most common	Rare	Extremely rare			
Chondromyxoid fibroma	Rare	Most common	Common			
Enchondroma	Rare	Common	Common			
Chondrosarcoma	Uncommon	Common	Most common			
Osteochondroma	Extremely rare	Most common	Common			
Non-ossifying fibroma	Extremely rare	Most common	Common			
Aneurysmal bone cyst	Common	Common	Rare			

(Figure-1b)- Anatomical locations of benign bone tumours.(Helliwell TR. et al., 1999)

4-Patterns of Growth and Bone Destruction:

Benign and non-growing (or extremely slowly growing) lesions well are circumscribed show and geographic pattern of bone destruction with a sclerotic Geographic rim. pattern refers to a well-defined area of lysis. The sclerotic rim is more commonly seen in the weight-bearing bones represents bone reaction to the lesion. Its presence means that the bone has been given sufficient time to react. Some authors say that the sclerotic rim signifies benignancy to about 95%.