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ABSTRACT 

 

The rapid development of power electronics technology provides 

opportunities to develop new power equipment to improve the 

performance of the actual power systems. During the last decade, a 

number of control devices called “Flexible AC Transmission Systems” 

(FACTS) technology have been proposed and implemented.  FACTS 

devices can be used for power flow control, voltage regulation, and 

enhancement of transient stability and damping of power oscillations. 

 

The possibility to improve the performance of the AC transmission 

system utilizing power electronic equipment has been discussed a lot 

since about ten years. Some new semiconductor based concepts have 

been developed. The Thyristor Controlled Series Capacitor (TCSC) is one 

of such concept. By varying the inserted reactance, an immediate and 

well-defined impact on the active power flow in the transmission line is 

obtained. Several potential applications, specifically power oscillation 

damping, benefit from this capability. The concept implied the 

requirement to design a semiconductor valve, which can be inserted 

directly in the high-voltage power circuit. This certainly presented a 

technical challenge but the straightforward approach appeared to be a 

cost-effective alternative with small losses. 

 

This thesis presents a detailed model of TCSC to study its effect on 

the enhancement of the power network performance.  This study covers 

the network performance under steady–state and transient conditions. The 

model with PID controller is used to control the power flow during steady 

state operation and with stability controller to improve system stability 

during transient conditions. The MATLAB-Simulink-Toolbox is used to 

check the validity of the proposed model by applying it to a simple power 

network. Results of the simulated network, on which both controllers 

were implemented, are presented and show its effectiveness, and 

capability in controlling system variables during steady state and transient 

operations. 
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CHAPTER (1) 

 

INTRODUCTION 

 

121  GENERAL 

 

In today’s highly complex and interconnected power systems,   which is 

made of thousands of buses and hundreds of generators.  So there is a great 

need to improve electric power utilization while still maintaining reliability 

and security. 

 

Available power generation, usually not situated near a growing load 

center, is subject to regulatory policies and environmental issues.  In order to 

meet the ever-growing power demand, utilities prefer to rely on already 

existing generation and power export/import arrangements instead of building 

new transmission lines that are subject to environmental and regulatory 

policies. 

 

On the other hand, power flows in some of the transmission lines are 

well below their thermal limits, while certain lines are overloaded, which has 

an overall effect of deteriorating voltage profiles and decreasing system 

stability and security.  In addition, existing traditional transmission facilities, 

in most cases, are not designed to handle the control requirements of complex, 

highly interconnected power systems. 

 

This overall situation requires the review of traditional transmission 

methods and practices, and the creation of new concepts which would allow 

the use of existing generation and transmission lines up to their full 

capabilities without reduction in system stability and security.  Another reason 

that is forcing the review of traditional transmission methods is the tendency 

of modern power systems to follow the changes in today’s global economy 

that are leading to deregulation of electrical power markets in order to 

stimulate competition between utilities. 

 

The desire to find solutions to these problems and limitations led to 

focused technological developments under the Flexible AC transmission 

system (FACTS) initiative of the Electric Power Research Institute (EPRI) in 

the United States with the ultimate objective to provide power electronics-

based, real time control for transmission systems. 

 

The benefits of utilizing FACTS devices in electrical transmission 

systems can be summarized as follows: 

 

i) Better utilization of existing transmission 

 


