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ABSTRACT

The rapid development of power electronics technology provides
opportunities to develop new power equipment to improve the
performance of the actual power systems. During the last decade, a
number of control devices called “Flexible AC Transmission Systems”
(FACTS) technology have been proposed and implemented. FACTS
devices can be used for power flow control, voltage regulation, and
enhancement of transient stability and damping of power oscillations.

The possibility to improve the performance of the AC transmission
system utilizing power electronic equipment has been discussed a lot
since about ten years. Some new semiconductor based concepts have
been developed. The Thyristor Controlled Series Capacitor (TCSC) is one
of such concept. By varying the inserted reactance, an immediate and
well-defined impact on the active power flow in the transmission line is
obtained. Several potential applications, specifically power oscillation
damping, benefit from this capability. The concept implied the
requirement to design a semiconductor valve, which can be inserted
directly in the high-voltage power circuit. This certainly presented a
technical challenge but the straightforward approach appeared to be a
cost-effective alternative with small losses.

This thesis presents a detailed model of TCSC to study its effect on
the enhancement of the power network performance. This study covers
the network performance under steady—state and transient conditions. The
model with PID controller is used to control the power flow during steady
state operation and with stability controller to improve system stability
during transient conditions. The MATLAB-Simulink-Toolbox is used to
check the validity of the proposed model by applying it to a simple power
network. Results of the simulated network, on which both controllers
were implemented, are presented and show its effectiveness, and
capability in controlling system variables during steady state and transient
operations.
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CHAPTER ()

INTRODUCTION

V.V GENERAL

In today’s highly complex and interconnected power systems, which is
made of thousands of buses and hundreds of generators. So there is a great
need to improve electric power utilization while still maintaining reliability
and security.

Available power generation, usually not situated near a growing load
center, is subject to regulatory policies and environmental issues. In order to
meet the ever-growing power demand, utilities prefer to rely on already
existing generation and power export/import arrangements instead of building
new transmission lines that are subject to environmental and regulatory
policies.

On the other hand, power flows in some of the transmission lines are
well below their thermal limits, while certain lines are overloaded, which has
an overall effect of deteriorating voltage profiles and decreasing system
stability and security. In addition, existing traditional transmission facilities,
In most cases, are not designed to handle the control requirements of complex,
highly interconnected power systems.

This overall situation requires the review of traditional transmission
methods and practices, and the creation of new concepts which would allow
the use of existing generation and transmission lines up to their full
capabilities without reduction in system stability and security. Another reason
that is forcing the review of traditional transmission methods is the tendency
of modern power systems to follow the changes in today’s global economy
that are leading to deregulation of electrical power markets in order to
stimulate competition between utilities.

The desire to find solutions to these problems and limitations led to
focused technological developments under the Flexible AC transmission
system (FACTYS) initiative of the Electric Power Research Institute (EPRI) in
the United States with the ultimate objective to provide power electronics-
based, real time control for transmission systems.

The benefits of utilizing FACTS devices in electrical transmission
systems can be summarized as follows:

1) Better utilization of existing transmission



