

PEDIATRIC LIVER MASSES

BY

Mohammad El-Sayed El-Refay Ghalwash (M.B.B.Ch)

Mansoura University

Essay

Submitted for Fulfillment of the Master Degree In Pediatrics

Supervisors

Prof. Dr.

Mortada Hasan El-Shabrawi Professor of Pediatrics Faculty of Medicine Cairo University

Dr.

Ranya Aly Hegazy Lecturer of Pediatrics Faculty of Medicine Cairo University Dr.

Naglaa Mohammad Kamal Lecturer of Pediatrics Faculty of Medicine Cairo University

ACKNOWLEDGMENT

"Thanks first to *Allah*, who has given me everything I have"

I wish to express my great thanks to *Prof. Dr. Mortada H. El-Shabrawi*, Prof. of Pediatrics, the head of pediatric hepatology unit, Faculty of Medicine, Cairo University, one of the pioneers of pediatric hepatology in Cairo University, for his honest advice, sincere cooperation, meticulous observations, and continuous guidance during this work, unlimited help, and generous support.

I am grateful to *Dr. Ranya Aly Hegazy*, Lecturer of Pediatrics, Faculty of Medicine, Cairo University, for suggesting the points investigated and for her advice, sincere cooperation, meticulous observations, continuous guidance during this work and generous support.

I would like to forward my grateful appreciation to *Dr. Naglaa Mohammad Kamal*, Lecturer of Pediatrics, Faculty of Medicine, Cairo University, for her sincere cooperation, and support.

No words could express my deep thanks to *Dr. Nehal Mohamed Al-Koofy*, Assistant Prof. of Pediatrics, Faculty of Medicine, Cairo University, for her honest advice, encouragement, unlimited help and generous support.

I also extend my thanks to all my colleagues, without their help this work has never seen light.

DEDICATION

To the spirit of my mother, Spirit of My father,

My brother Shaban,
My sisters Mervate and Alliaa,

And to all of my family,

I dedicate this work

Mohammad Ghalwash

CONTENTS

SUBJECT	PAGE
Introduction and Aim of the Work	1
(1) Liver Anatomy & Histology	
Embryology of the Liver	5
 Gross Anatomy of the Liver 	7
 Microscopic Anatomy of the Liver 	31
(2) Benign Neoplastic Liver Masses	
Infantile Hemangioendothelioma	40
Cavernous Hepatic Hemangioma	46
Mesenchymal Hamartoma	50
 Focal Nodular Hyperplasia 	61
Hepatocellular Adenoma	65
 Hepatic Teratoma 	67
(3) Malignant Liver Masses	
 Hepatoblastoma 	69
Hepatocellular Carcinoma	84
 Undifferentiated Embryonal Sarcoma 	90
 Angiosarcoma 	94
 Rhabdomyosarcoma 	95
 Metastatic Hepatic Tumors 	99
(4) Nonneoplastic Liver Masses	
 Simple Hepatic Cyst 	101
 Polycystic Liver disease 	104
 Hepatic Hematoma 	105
 Peliosis Hepatis 	106
 Parasitic Hepatic cyst 	109
 Pyogenic Liver Abscess 	113
Amebic Liver Abscess	116
Inflammatory Pseudotumor	119
Nodular Regenerative Hyperplasia	121
Choledochal Cyst Summary and Carolingian	124 130
Summary and Conclusion	
References	137
Arabic Summary	168

LIST OF TABLES

	Title	Page
Table 1	Classification of Liver Masses.	2
Table 2	Presenting symptoms of hepatic hemangioendothelioma	42
Table 3	Difference between hemangioma and Hemangioendothelioma.	47
Table 4	Current Pathologic Classification of FNH.	64
Table 5	Conditions associated with Hepatoblastoma.	70
Table 6	Clinical Staging of Hepatoblastomas.	76
Table 7	Conditions Associated With HCC.	85
Table 8	Classification of hepatic hydatid cysts.	112
Table 9	Conditions associated with NRH.	122

LIST OF FIGURES

	Title	Page
Fig 1	Embryology of the liver & development of hepatic blood vessels.	6
Fig 2	External gross anatomy of the liver, anterior view.	8
Fig 3	Schematics illustrate the normal portal vein (PV) branches.	11
Fig 4	Diagram of the hepatic segments (I-VIII) with their portal venous branches.	23
Fig 5	Subxiphoid, oblique sonogram and Corresponding CT scan	24
	shows the left (L), middle (M), and right (R) hepatic veins.	
Fig 6	Anatomy of the segmental portal veins ; there is one H for each lobe.	25
Fig 7	Subxiphoid sonogram and the corresponding CT scan shows	26
71 0	the H of the left lobe. Arrows show the ligamentum venosum.	••
Fig 8	A sagittal-oblique intercostal sonogram obtained at the	28
	midaxillary line shows the H of the right lobe.	
Fig 9	CT scan shows the falciform ligament (Fl), separating segment 4	29
	(IV) from segment 2 and 3 (II / III).	
Fig 10	Subxiphoid sonogram (above) and Corresponding CT scan	30
	(below) show, the ligamentum venosum (LV).	
Fig 11	Normal portal tract from human liver shows small bile ducts (B),	31
	hepatic artery (A), a portal vein (P), and occasional lymphocytes (H	
	& E).	
Fig 12	Normal liver histology, shows classic hepatic lobule, H terminal	32
	hepatic vein, P portal tract (H & E).	
Fig 13	Diagram of classic liver acinus.	34
Fig 14	Diagram of hepatocyte.	36

Fig 15	Abdominal IV contrast-enhanced CT shows a circumscribed mass	43
	in the left lobe, typical for a hemangioendothelioma .	
Fig 16	Histology of cavernous hemangiomas, shows large vascular	48
	channels packed with abundant red blood cells (H & E).	
Fig 17	Hemangioma (CT). Unenhanced and early arterial CT examination	48
	(A, B). Late venous phase (C) images.	
Fig 18	Cavernous Hemangioma (MRI). Precontrast T1-weighted image	49
	(A), T2-weighted image (B), postcontrast T1 (C, D).	
Fig 19	Abdominal CT scan of a 7 year-old girl with an MHL consisting of	53
	2 large cysts.	
Fig 20	Magnetic resonance scan of a 2-month-old baby with a large,	53
	dominantly solid MHL (after gadolinium contrast).	
Fig 21	Histology of an MHL showing distorted bile ductules, small cystic	56
	spaces with myxoid connective tissue (H&E).	
Fig 22	The liver of a neonate at autopsy shows a discrete MHL in the	57
	right and left lobes of the liver.	
Fig 23	CT scan appearance of the infant's left liver lobe FNH.	62
Fig 24	Histopathology finding of FNH (H & E).	64
Fig 25	CT of hepatic adenoma reveals large right hepatic lesion, with a	66
	faint pseudocapsule containing the adenoma.	
Fig 26	Enhanced CT scans of a 22-month-old male with HB. A) At	73
	diagnosis. B) After four courses of chemotherapy.	
Fig 27	HB with fetal and embryonal patterns. The fetal component is	74
	composed of tumor cells with abundant eosinophilic cytoplasm.	
Fig 28	PRETEXT (PRE Treatment EXTent of disease) staging system.	76
Fig 29	Unenhanced CT scan of a 17-year-old girl with HCC shows a	86
	large mass in right lobe of liver.	
Fig 30	HCC histopathology. a) Moderately differentiated HCC shows	88
	trabecular pattern. b) Fibrolamellar carcinoma	
Fig 31	Enhanced CT scan of 1-month-old boy with UES of liver.	91

Fig 32	Histopathology of UES (H&E) shows ovoid to spindle-shaped	93
	cells with pleomorphic nuclei on eosinophilic mixoid matrix.	
Fig 33	CT scan of 14-year-old boy with rhabdomyosarcoma, in biliary	96
	tract.	
Fig 34	Contrast-enhanced CT scan of liver metastasis. (A) A girl with	100
	right adrenal neuroblastoma. B) A boy with metastatic carcinoma.	
Fig 35	Unenhanced CT scan of 18-year girl with a simple hepatic cyst.	102
Fig 36	CT of polycystic disease of the liver. CT in patient with a history	105
	of polycystic kidney disease	
Fig 37	Contrast axial CT scan of peliosis hepatis. (A) Through the upper	107
	abdomen (B) At a lower level.	
Fig 38	US scan showing a giant, type II liver hydatid cyst with a floating	111
	membrane appearance	
Fig 39	CT scan of hydatid cyst. (A) Plain CT showing multiple liver and	111
	splenic hydatid cysts. (B) Enhanced CT showing enhancement of	
	the cyst wall and septa of Type II hydatid cyst	
Fig 40	CT scans of liver abscess. (A) CT scan of 6-year girl with	115
	pyogenic liver abscess (arrows). (B) CT scan of 9-year boy with	
	cat scratch fever	
Fig 41	CT scans of NRH illustrate multiple hypodense nodules during	123
	arterial phase (A) that become isodense during portal venous phase	
	(B)	
Fig 42	Enhanced CT scan. A) of 15-month girl with Caroli disease, (B)	125
	of 15-year boy with choledochal cyst	
Fig 43	Types of choledochal cyst	126

Abbreviations

AFP	alpha-fetoprotein
APC	1 1
CFTR	1 31
CK19	
CML	
CT	·
DFS	
EFS	
FAP	
FNA	1 71
FNH	-
G-CSF	
НА	Hepatic artery
HBV	Hepatitis B virus
HBsAg	
HCC	hepatocellular carcinoma
HD	hydatid disease
HB	hepatoblastoma
ICAM-1	intercellular adhesion molecule 1
IF-α2A	interferon-α2A
IGF2	insulin like growth factor 2
IPA	ifosfamide / cisplatin / doxorubicin
	Inflammatory pseudotumor
	Inferior vena cava
LDH	, .
MDCT	
MHL	3
MR	magnetic resonance
MRI	magnetic resonance imaging
NHL	Non Hodgkin Lymphoma
NK	natural killer
NRH	
OLT	orthotopic liver transplantation
OS	overall survival
PAS	periodic acid-Schiff
PECAM-1	platelet endothelial cell adhesion molecule 1
PLA	, <i>C</i>
PLS	1
PV	portal vein
SGOT	Serum glutamic-oxaloacetic transaminase

SIOP International Society of Pediatric Oncology

SNPCL solitary nonparasitic cyst of the liver

TNM tumor, node, metastases

UES Undifferentiated embryonal sarcoma

US Ultrasound U.S. United States

VP ventriculoperitoneal

Introduction

Hepatic masses are increasingly being diagnosed, often as a result of more frequent and sophisticated imaging. Lesions can be detected during screening for primary or metastatic tumors, or as an incidental finding. Although some have distinctive radiological appearances allowing for a confident diagnosis, histological assessment of biopsy and resection specimens remains the cornerstone for the correct identification of many lesions (*Clouston*, 2004). The list of differential diagnosis, when meeting a child suffering from a hepatic mass, is long (table 1). It includes benign and malignant primary tumors, vascular tumors, metastases, cysts and abscesses. When hepatic masses are symptomatic, they most commonly manifest as a palpable mass with abdominal distention. Other signs and symptoms may include pain, anorexia, weight loss, fever, jaundice, and congestive heart failure (*Siegel*, 2001).

There are several benign and malignant processes in the liver, which are different from the normal and diffuse pathological alterations in smaller or bigger forms of hepatic nodules. Some of them are benign alterations having no clinical significance, but they have some difficulties in the differential diagnosis (*Palko*, 2004). In children, benign tumors constitute only 30% of liver tumors and most are vascular in origin (*Reynolds*, 1999). There is a remarkable diversity of conditions encompassed by benign liver masses in infants and toddlers. The most common benign hepatic tumor in this age group is infantile hepatic hemangio-endothelioma. It has no morphologic counterpart in the adult liver if one allows for the difficulty in the differential diagnosis in some cases with angiosarcoma (*Chandra*, 1992). The differential diagnosis of

benign hepatic tumors includes nonneoplastic cystic masses including biliary and simple hepatic cysts, hematoma, parasitic cysts, and pyogenic and amebic liver abscess (*Meyers and Scaife*, 2000).

Table (1): Classification of Liver Masses.

<i>Table (1): Classification of</i> Benign liver tumors	Hemangiomas & Hemangioendothelioma
S	Focal nodular hyperplasia
	Hepatic adenoma & Adenomatosis
	Mesenchymal hamartomas
	Lymphangioma & Lymphangiomatosis
	Nodular regenerative hyperplasia
	Cystadenoma
	Teratoma
	Myxoma
Malignant liver tumors	Hepatoblastoma
C	Hepatocellular carcinoma & fibrolamellar variant
	Undifferentiated embryonal sarcoma
	Rhabdoid tumor
	Rhabdomyosarcoma
	Angiosarcoma
	Malignant germ cell tumor
	Non-Hodgkin's lymphoma
	Metastases: neuroblastoma, Wilms' tumor,
	rhabdomyosarcoma, germ cell tumor,
	lymphoma, leukemia, Langerhans' cell
	histiocytosis, chriocarcinoma,
	pancreatoblastoma, carcinoid
Benign bile duct	Granular cell tumor
tumors	Inflammatory pseudotumor
Malignant bile duct	Cholangiocarcinoma
tumors	Adenocarcinoma
	Rhabdomyosarcoma
Non-neoplastic liver	Cysts: simple hepatic cyst, peliosis hepatis,
masses	parasitic Hydatid cyst
	Liver abscesses: amebic liver abscess,
	pyogenic liver abscess
	Hematoma & biloma
	Inflammatory pseudotumor

Primary hepatic neoplasms in children are relatively infrequent, accounting for between 0.5 and 2.0% of all pediatric neoplasms. They are a diverse group of epithelial and mesenchymal tumors whose incidence can vary considerably with patient age. They are clinically relevant tumors however as two thirds of them are malignant (*Emre and McKenna*, 2004). The liver is one of the most common sites of primary abdominal neoplasm in children. Hepatoblastoma (HB) represents up to 85% of primary pediatric liver tumors and is followed in frequency by hepatocellular carcinoma (HCC) and infantile hemangioendothelioma. Pediatric liver masses require accurate characterization and estimation of extent relative to hepatic segmental and vascular anatomy, which have been improved with the use of multidetector CT (MDCT) and MRI. Histologic examination is still needed to characterize some benign liver tumors (*Van Beers et al.*, 2003).

Metastatic hepatic lesions such as neuroblastoma, Wilms' tumor, and lymphoma are the most common neoplasms seen in the liver. Some distinct primary liver tumors may be seen rarely, including leiomyosarcoma, rhabdoid tumor, and endodermal sinus tumor. But five of the primary hepatic neoplasms--hepatoblastoma, infantile hemangioendothelioma, mesenchymal hamartoma, undifferentiated embryonal sarcoma, and embryonal rhabdomyosarcoma of the biliary tree-commonly occur only in children (Stocker, 2001). An important differentiating factor in the evaluation of pediatric hepatic masses is the Hemangioendotheliomas, age of the patient. hepatoblastomas, mesenchymal hamartomas, and metastatic disease from Wilms tumor or neuroblastoma are usually seen in the first 3 years of life, whereas HCC, focal nodular hyperplasia, hepatic adenoma, and metastases from lymphoma are more common in older children (*Siegel*, 2001).

Aim of work

The aim of this essay is to review the various aspects of liver masses in the pediatric age group. We mean to highlight the different types of masses, the most novel methods of their diagnosis and all the options of their management.

Chapter 1

Embryology, Anatomy and Histology

Embryology of the liver

The liver arises from the hepatic diverticulum of the foregut during the fourth week of gestation (*Severn*, 1971 and *Couinaud*, 1989). As the embryo develops, the blood supply to this region evolves in an elaborate manner to deliver nutrients from three different sources in the sequence: yolk sac, placenta, and gut (*Strasberg*, 1997). Hepatocyte precursors, the hepatoblasts, arise from endodermal cells at the advancing front of the diverticulum and invade the mesoderm of the caudal portion of the septum transversum. The vitelline veins traverse the region, bringing blood from yolk sac and digestive tube to the heart (Fig. 1). As hepatoblasts invade the mesenchyme, they disrupt the vitelline veins, tapping their blood supply. This supply is from the vitelline veins, segments of which later become the portal vein (PV). The hepatic bud is subdivided into cords by new capillaries called sinusoids. The sinusoidal flow coalesces into three major hepatic veins (*Wanless*, 2003).

At the time the main hepatic veins are developing, the entire liver is composed of only two lobules, and there is no artery and no left or right bile duct. As the hepatic and portal veins (PVs) begin to branch, the branches interdigitate to remain equidistant from each other, and the parenchyma is subdivided into numerous lobules, or acini (*Ekataksin and Wake 1991*). The hepatoblast cords develop into anastomosing tubular structures with central bile canaliculi that eventually communicate with the bile ducts. Most hepatoblasts differentiate into hepatocytes, but those adjacent to the portal mesenchyme differentiate into a layer of duct