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ABSTRACT

Combustion Control using Elliptic jets issued from elliptic nozzles has gained a lot of interest
during the last four decades due to the obtained favorable aerodynamic features and enhanced
mixing characteristics of two flowing streams of fluids than two dimensional jets issued from
circular nozzles. These efforts were done in response to the increased demands for higher

efficiency burners for various industrial applications.

Burner nozzle element was designed and equipped to the combustor rig to carry out the
proposed investigation experimentally of the characteristics of diffusion flames for three
elliptic burner nozzles of different aspect ratios; 1.6, 2, 3.3 respectively. Flame Temperature,
turbulence Characteristics as well as emissions [CO, NOx, UHC...] were measured and
compared to those of diffusion flames issued from circular nozzles of equivalent cross section

area.

Four burner nozzle configurations were investigated; single elliptic burner nozzle in circular
co — flow, applied cross flow admissions on diffusion flames issued from elliptic burner
nozzle, two concentric nozzles configurations using biased injection element [this

configuration was applied for normal diffusion flames and for inversed diffusion flames].

Numerical simulations were performed for the four configurations to predict and estimate the
expected experimental flame properties and predicting the optimized firing conditions when

using burners equipped with elliptic nozzles.

It was found that a single elliptic burner nozzle of aspect ratio 3.3 produced the lowest carbon
monoxide concentration level indicating more oxidation of carbon monoxide to carbon
dioxide as a result of the enhanced air entrainment into the jet core. This occurred due to the

effect of further increase of nozzle aspect ratio.

Retarding the cross flow reduced the CO concentrations as the premixing effect increased the
rate of oxidation of CO into CO,. The reduction of NOx concentrations was recorded due to
the increased level of homogeneity and reduced local peak flame temperatures. These effects

reduced the formation of NOyx according to the Zeldovich Mechanism.

Favorable interaction zones resulted due to varying the modulating angle between the inner

and outer nozzles in two concentric nozzles configuration.



Inversed diffusion flames issuing from elliptic nozzles had reduced CO concentrations due to
the enhanced mixing and combustion rates upon increasing the number of active points in the

unburned regions.

The peak turbulent kinetic energy was maximized at the major axis tips to pronounce
increased jet entrainment by 478% in comparison to concentric circular jets. Increasing the
aspect ratio from 1.6 to 3.3 nearly duplicated the peak turbulent Kinetic energy and resulted in
9% increase in the combustion efficiency with 25% UHC reduction. As dominated by the
peak turbulent energy merging, the optimum angular positioning of the two jets was 35° for
higher inner jet velocity. For lower inner jet velocity, the best angular positioning was 45 and
30° for higher and lower inner aspect ratio, respectively. By introducing radially opposing air
jets, the optimum angular positioning decreased to 25° as the flame was shortened by about
43%. The multi-stage air cross-flow revealed more aerodynamic features. Using less number
of stages and increasing the cross-flow admission distance to 20 cm at increased cross-flow
percent to 70% minimized the average UHC and Noy emissions. The optimum performance
was thus found when lifted flame premixing features were coupled with the impinging cross-

flow stabilizing effects
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Nomenclature

A Cross section Area [m?]
A Junction Surface Cross section area [m?]
Cq Coefficient of Discharge.
D Equivalent Diameter [mm]
Da Damkohler number,
E Activation Energy [W]
AH Pressure Head [m]
le Kolomogrov’ s length scale
la Diffusive Layers length
° Mass Flow rate [kg/sec]
AP Pressure Difference [bar]
Q Mass Flux at particular location [kg/m 2.s]
Qo Mass Flux at nozzle exit with equivalent diameter [kg/m 2 .s]
Ta Activation Temperature [K]
Ty Flame Temperature [K]
Tj Junction Temperature [K]
Tw Wall Temperature [K]
U Mean Axial Velocity at a particular location [m/s]
U/U, Normalized Axial Velocity
Uconv Convection Heat Transfer Coefficient [Watt/m?.K]
Uo Mean Exit Velocity at a particular location [m/s]
x/D Axial distance to Jet Diameter Ratio



