

INVESTIGATION OF COMBUSTION UTILIZING NON-CIRCULAR PORTS

By

Osama Ahmed Metwally Hassan Kashkousha

B.Sc. Mechanical Power Engineering Department, 2007

A Thesis Submitted in Accordance with the Requirements for the Degree of Master of Science

Under Supervision of

Prof. Dr. Mahmoud Abd El-Rasheed Nosir

Professor at the Mechanical Power Department
Faculty of Engineering
Ain Shams University

Dr. Abd El-Aziz Morgan Abd El-Aziz

Dr. Mahmoud Mohamed Kamal

Associate Professor at the Mechanical Power Department

Faculty of Engineering

Ain Shams University

Associate Professor at the Mechanical Power Department

Faculty of Engineering

Ain Shams University

Cairo

2012

Examiner Committee

The undersigned certify that they have read and recommended to the faculty of engineering, Ain Shams University for acceptance a thesis entitled by "Investigation of Combustion Utilizing Non – circular Ports", submitted by Osama Ahmed Metwally Hassan Kashkousha, in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Power Engineering.

Name

1. Prof. Dr. Hendawy Salem Mohamed Mechanical Power Department Faculty of Engineering Cairo University

- 2. Prof. Dr. Adel Abd El Malek El Ahwany
 Mechanical Power Department
 Faculty of Engineering
 Ain Shams University
- 3. Prof. Dr. Mahmoud Abd El-Rasheed
 Mechanical Power Department
 Faculty of Engineering
 Ain Shams University
- 4. Dr. Mahmoud Mohamed Kamal
 Mechanical Power Department
 Faculty of Engineering
 Ain Shams University

Signature

Adel E

MAH

M.M.Kamal

Statement

This dissertation is submitted to Ain Shams University in fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering.

The work included in this thesis was made by the author during the period from October 2009 to January 2012 at the Mechanical Power Engineering Department, Ain Shams University.

No Part of this thesis has been submitted for degree or qualification at any other university or institute.

Date : 4_11_2012

Signature: O.A. Kashkousha

Name : Osama Ahmed Metwally Hassan Kashkousha

ACKNOWLEDGEMENT

I am deeply indebted to my supervisors, Professor **Dr. Mahmoud Abd El Rasheed**, **Dr. Abd El Aziz Morgan** and **Dr. Mahmoud Kamal** for their successful command, encouragement and continuous support.

I highly appreciate their productive guidance and help in my research.

I am deeply grateful to my parents who supported me during the daily work of the investigation.

Finally, I would like to thank the technical group who shared me the effort in the laboratory.

ABSTRACT

Combustion Control using Elliptic jets issued from elliptic nozzles has gained a lot of interest during the last four decades due to the obtained favorable aerodynamic features and enhanced mixing characteristics of two flowing streams of fluids than two dimensional jets issued from circular nozzles. These efforts were done in response to the increased demands for higher efficiency burners for various industrial applications.

Burner nozzle element was designed and equipped to the combustor rig to carry out the proposed investigation experimentally of the characteristics of diffusion flames for three elliptic burner nozzles of different aspect ratios; 1.6, 2, 3.3 respectively. Flame Temperature, turbulence Characteristics as well as emissions [CO, NO_X, UHC...] were measured and compared to those of diffusion flames issued from circular nozzles of equivalent cross section area.

Four burner nozzle configurations were investigated; single elliptic burner nozzle in circular co – flow, applied cross flow admissions on diffusion flames issued from elliptic burner nozzle, two concentric nozzles configurations using biased injection element [this configuration was applied for normal diffusion flames and for inversed diffusion flames].

Numerical simulations were performed for the four configurations to predict and estimate the expected experimental flame properties and predicting the optimized firing conditions when using burners equipped with elliptic nozzles.

It was found that a single elliptic burner nozzle of aspect ratio 3.3 produced the lowest carbon monoxide concentration level indicating more oxidation of carbon monoxide to carbon dioxide as a result of the enhanced air entrainment into the jet core. This occurred due to the effect of further increase of nozzle aspect ratio.

Retarding the cross flow reduced the CO concentrations as the premixing effect increased the rate of oxidation of CO into CO_2 . The reduction of NO_X concentrations was recorded due to the increased level of homogeneity and reduced local peak flame temperatures. These effects reduced the formation of NO_X according to the Zeldovich Mechanism.

Favorable interaction zones resulted due to varying the modulating angle between the inner and outer nozzles in two concentric nozzles configuration.

Inversed diffusion flames issuing from elliptic nozzles had reduced CO concentrations due to the enhanced mixing and combustion rates upon increasing the number of active points in the unburned regions.

The peak turbulent kinetic energy was maximized at the major axis tips to pronounce increased jet entrainment by 478% in comparison to concentric circular jets. Increasing the aspect ratio from 1.6 to 3.3 nearly duplicated the peak turbulent kinetic energy and resulted in 9% increase in the combustion efficiency with 25% UHC reduction. As dominated by the peak turbulent energy merging, the optimum angular positioning of the two jets was 35° for higher inner jet velocity. For lower inner jet velocity, the best angular positioning was 45 and 30° for higher and lower inner aspect ratio, respectively. By introducing radially opposing air jets, the optimum angular positioning decreased to 25° as the flame was shortened by about 43%. The multi-stage air cross-flow revealed more aerodynamic features. Using less number of stages and increasing the cross-flow admission distance to 20 cm at increased cross-flow percent to 70% minimized the average UHC and No_x emissions. The optimum performance was thus found when lifted flame premixing features were coupled with the impinging cross-flow stabilizing effects

Table of Contents

Examiner Committee	1
Statement	II
Acknowledgment	III
Abstract	IV
Table of Contents	VI
Nomenclature	X
Greek Letters	XI
Subscripts and Superscripts	XII
Abbreviations	XIII
List of Figures	XIV
List of Tables	XX
CHAPTER 1: INTRODUCTION	1
1.1 General	1
1.2 Thesis Layout	4
CHAPTER 2: PHYSICAL INSIGHT	6
2.1 Introduction to free jets	6
2.2 Dynamics of Three Dimensional Jets	6
2.2.1 Self Induction Mechanism	7
2.2.2 Axis Switching Phenomenon	7
2.2.3 Vortex Ring Bifurcation	8
2.2.4 Flow Patterns	9
2.2.5 Velocity Field	
2.2.6 Entrainment characteristics	11
2.3 Relevant Combustion Topics	13
2.4 Combustion Flow Types	14
2.4.1 Annular Flow	14
2.4.2 Coaxial Jets	

2.4.3 Cross-Flow Jets	17
2.5 Combustion Control	18
2.6 Small Scale Mixing	19
CHAPTER 3: LITERATURE SURVEY	21
3.1 Introduction	21
3.2 Review of Previous Works	22
3.2.1 Characterizing the cold flow features of elliptical jet configurations	22
3.2.2 Characterizing the cold flow features of elliptical jets with the active control via pulsation	24
3.2.3 Highlighting the combustion features of single and concentric elliptical jets	27
3.2.4 Highlighting the Aeroddynamics and Combustion Features of elliptical jets with the active controlvia cross - flow	31
3.3 Discussion of previous work and scope of the present work	34
CHAPTER 4: EXPERIMENTAL TEST RIG AND MEASURING TECHNIQUES	36
4.1 Introduction	36
4.2 Test Rig Layout and Configurations	37
4.3 Components of Test Rig	48
4.4 Measuring Instruments	53
4.5 Experimental Procedure	61
4.6 Error Analysis	63
CHAPTER 5: EXPERIMENTAL RESULTS	67
5.1 Introduction	67
5.2 Biased Injection Configuration	67
5.3 The Currently Proposed Testing Experiments & Testing Procedure	67
5.4 Proposed Measurements	69
Experiments	70
1. Investigating the diffusion flames issuing from burners fitted with single elliptical nozzles in circular co – flow air stream	70
2. Investigating the effect of Cross – Flow air on diffusion flames issuing from burners with single elliptic nozzles in a circular air co - flow	79

Investigating the Diffusion Flames issuing from burners fitted with two concentric elliptic air/fuel nozzles using the Biased Injection Configuration	
4. Investigating the Inversed Difusion Flames Issuing from Burners fitted concetric elliptic air/fuel nozzles using the Biasd Injection Configuration	
Conclusions	114
CHAPTER 6: COMBUSTION MODELING AND SIMULATION	115
6.1 Conservation Equations and the Physical Model	115
6.2 Conservation Equations	115
6.2.1 Mass Conservation	116
6.2.2 Momentum Conservation	117
6.2.3 Energy Conservation	120
6.3 Introduction to Combustion Modeling and CFD	121
6.3.1 Transport Equations	122
6.3.2 The Damkohler Number	123
6.3.3 Conservation Laws	124
6.3.4 Three Turbulent – Flame Interaction Regimes	125
6.4 Mathematical Solution Method	127
6.4.1 Discretization Method	127
6.4.2 Convection Discretization	128
6.4.3 Diffusion Discretization	129
6.4.4 Source Term Linearization	130
6.4.5 Finite Difference Equation	130
6.5 Solution Algorithm and Combustion Modeling	131
6.5.1 Selection of appropraite Combustion Model	133
6.5.2 Eddy Dissipation Model Coeffecients	134
6.5.3 The PDF for NO modeling	134
6.6 Investigated Cases	136
Case (A): Single Elliptic Burner (Fuel Nozzle) in a Circular Co-flow	137
Case (B): Biased Injection Configuration	145
Case (C): Single Elliptic Fuel Nozzle In A Cross-Flow Configuration	159
Case (D): Inversed Diffusion Flames Issued From Biased Injection	
Configuration	171

CHAPTER 7: CONCLUSIONS AND RECOMMONDATIONS FOR FUTURE WORKS	S
	. 182
REFERENCES.	10/
APPENDICES	
Appendix A	. 188
Appendix B	. 189

Nomenclature

A Cross section Area [m²]

A_j Junction Surface Cross section area [m²]

C_d Coefficient of Discharge.D Equivalent Diameter [mm]

Damköhler number,

E Activation Energy [W]

Δ H Pressure Head [m]

*l*_k Kolomogrov's length scale

l_d Diffusive Layers length

 m^{o} Mass Flow rate [kg/sec] ΔP Pressure Difference [bar]

Q Mass Flux at particular location [kg/m ².s]

Q_o Mass Flux at nozzle exit with equivalent diameter [kg/m².s]

 T_a Activation Temperature [K] T_f Flame Temperature [K]

 T_{j} Junction Temperature [K]

T_w Wall Temperature [K]

U Mean Axial Velocity at a particular location [m/s]

U/U_o Normalized Axial Velocity

U_{Conv} Convection Heat Transfer Coefficient [Watt/m².K]
U_o Mean Exit Velocity at a particular location [m/s]

x/D Axial distance to Jet Diameter Ratio