DETERMINATION OF FINGERPRINT AND IMPURITIES OF CERTAIN GENERIC AND ORIGINAL PESTICIDES

By

GEHAD MOSAD KHATTAB HASAN

B. Sc. Agric. Sc. (pesticides), Ain Shams University, 2006

A thesis submitted in partial fulfillment

of

the requirements for the degree of

MASTER OF SCIENCE.

in

Agricultural Science (Pesticides)

Department of Plant Protection

Faculty of Agriculture

Ain shams University

2012

DETERMINATION OF FINGERPRINT AND IMPURITIES OF CERTAIN GENERIC AND ORIGINAL PESTICIDES

By

GEHAD MOSAD KHATTAB HASAN

B. Sc. Agric. Sc. (pesticides), Ain Shams University, 2006

Under the supervision of:

Dr. Mohamed Ibraheam Abd EL-Megeed

Prof. Emeritus of Pesticides Chemistry, Department. of Plant Protection, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Walaa Mohamed Abd El-Ghany.

Associate Prof of Pesticides Chemistry, Department. of Plant Protection, Faculty of Agriculture, Ain Shams University

Dr. Hala mohamed husin Aboyossef.

Head of Research of Bioassay Department., Central Agricultural Pesticides Laboratory, Agriculture Research Center

Approval Sheet

DETERMINATION OF FINGERPRINT AND IMPURITIES OF CERTAIN GENERIC AND ORIGINAL PESTICIDES

By

GEHAD MOSAD KHATTAB HASAN

B. Sc. Agric. Sc. (pesticides), Ain Shams University, 2006

This thesis for M. Sc. degree has been approved by:

Dr. Monir Abd Alla
Prof Emeritus of Pesticides Chemistry, Faculty of Agriculture, Cairo University
Dr. Sayed Mohamed Abdel Latif Dahroug
Prof Emeritus of Pesticide Chemistry, Faculty of Agriculture, Ain Shams University
Dr. Walaa Mohamed Abd El-Ghany
Associate prof of Pesticides Chemistry, Dept. of Plant Protection, Faculty
Agriculture, Ain Shams University
Dr. Mohamed Ibraheam Abd EL-Megeed
Prof Emeritus of Pesticides Chemistry, Faculty of Agriculture, Ain Shams University

Data of Examination: 26 / 8 /2012

Gehad Mosad Khattab: Determination of Fingerprint and Impurities of Certain Generic and Original Pesticides. Unpublished M.Sc. Thesis, Department of plant protection, Faculty of Agriculture, Ain Shams University, 2012.

This study aims to assess the impurities in some generic pesticides recommended for use in Egyptian agrochemical market. It also calculates the violation percentage of the impurities present in the Technical compared to the allowed percentages by FAO, IUPAC. In addition, the study examines some physical and chemical properties for generic pesticides while comparing them to their equivalents in the FAO specifications.

The percentages of impurities were assessed within different chemical groups of 11 generic pesticides as following (carbosulfan, chlorpyrifos, chlorpyrifos-methyl, difenoconazole, fenamiphos, flusilazole, lambdacyhalothrin, metalaxyl, oxyfluorfen, prochloraz and thiobencarb).

The carbosulfan generic sample was assessed for the impurity (carbofuran) specified by the FAO and was found to be of higher percentage than that of the FAO specifications. Two samples from different sources (Denmark & China) of chlorpyrifos technical were assessed for impurities, along with 3 samples of chlorpyrifos methyl (1 from Denmark & 2 from China) as well as 2 samples of lambdacyhalothrin (1 from Denmark & 1 from China). The three following impurities were identified in the generic chlorpyrifos samples, 0,0-diethyl 0-6-chloro-2-pyridal phosphorothioate, 0,0-diethyl 0-5,6-dichloro-2-pyridyl phosphorothioate and 0-ethyl 0,0-bis (3,5,6-trichloropyridin-2-yl) phosphorothioate. In generic chlorpyrifos-methyl samples from China, four impurities were identified as following, (3,5,6-Trichloro-N-methyl-2-pyridone), (2-(5-chloro-2-methoxyphenyl) pyrrolidine), (O,O-dimethylO-(3-chloro-2-pyridinyl) phosphorothioate) and (2-hydroxy-3,5,6-trichloropyridine) while no impurities were found in the generic sample from Denmark Though FAO and IUPAC specify the impurity 0,0,0',0'-tetramethyl dithiopyrophosphate, it was not identified in any of the generic samples.

3-phenoxy benzaldehyde was identified as an impurity in both generic samples of Lambdacyhalothrin.

Impurities were not detected in both flusilazole and difenoconazole technical under the conditions used in this study However, the generic sample of difenoconazole showed a different ratio of diastereomers when compared to the original sample. The impurities of the generic sample of Fenamiphos were assessed and identified as (ethyl 2- (s-methyl-2,4-bis(methylthio)phenyl)propan-2-yl phosphoromidate) as an impurity within the sample.

The impurities of the generic sample of metalaxyl were assessed and 2 impurities were identified to be: Methyl N-(2,6-dimethylphenyl)N-acetyl-DL alaninate and Methyl N-(2,6-dimethylphenyl)N-(2-chloro acetyl)DL alaninate Though FAO and IUPAC specify the 2,6-dimethylanline as an impurity for metalaxyl.

The generic sample of Oxyfluorfen was assessed and identified α -(4-chlorophenyl)-4,6-dimethoxy-3-methylindole-7-methanol) as an impurity.

Hexachlorobenzene the specified impurity of prochloraz TC by IUPAC was identified in generic sample in addition to urea,N-(4-chlorophenyl)-N,N-dimethyl and 1,2,3,8,9-Penta chloro dibenzo [1,4] dioxine which not mentioned in IUPAC report.

Two following impurities were identified in the generic thiobencarb samples as following, (S-(2-chlorobenzyl)-N,N-diethyl thiol carbamat) and(N-[4-(acetylamino)phenyl]-1-methyl-4-nitro-1H-pyrazole-3-carboxamide).

The samples of the following generic pesticides, fenamiphos, chlorpyrifos-ethyl and methyl, lambdacyhalothrin, metalaxyl, oxyfluorfen, prochloraz and thiobencarb; have been shown to have impurities that are not identified by FAO or IUPAC. It was also found that the acidity and alkalinity of these samples coincide with the values found in FAO, and the differences between the melting points of the generic samples and the original ones (specified by FAO) does not exceed 2-3°C.

Key words:

Pesticide, Fingerprint, Impurities, Identification, Mass Spectroscopy, ¹H-NMR, IR, GC-Ms.

ACKNOWLEDGMENT

Many thanks and Praise be to great Allah most gracious who shined my way and supported me with patience and perseverance to fulfill this humble work.

I wish to express my deep gratitude to Prof. **Dr. Mohamed Ibraheam Abd EL-Megeed** Prof. of Pesticides Chemistry, Dept. of Plant Protection, Faculty of Agriculture, Ain Shams University, for his Supervision, guidance, useful criticism, valuable help and his efforts to fulfill this work. For his interest and efforts on my behalf, I am extremely grateful.

My Sincere appreciation and deep gratitude and thanks to **Dr. Walaa**Mohamed Abd El-Ghany, Associate Professor of Pesticides Chemistry, Dept. of Plant Protection, Faculty of Agriculture, Ain Shams University, for his sharing in supervision, kind unfailing help throughout this work, advice and encouragement in carrying out this work.

No words can adequately express my deep appreciation and gratitude to **Dr. Hala mohamed husin Aboyossef,** Senior Researcher in Pesticides Bioassay Dept., Central Agricultural Pesticides Laboratory, Agricultural Research Center, for her supervision constructive criticism, valuable advice and help, continuous encouragement, cooperation, and kind assistance.

I would like to express my deepest thanks and appreciation to **Dr. Saad EL Adawey Shehata Hamouda** Researcher in Pesticides Formulations Dept., Central Agricultural Pesticides Laboratory, Agricultural Research Center, for his great help and valuable suggestions throughout this work.

A lot of thanks for all my friends specially **Mona Bakry, Rania Mohamed and Zakia Kamal.,** and to all my friends for helping me, in Central Agric. Pesticides Lab., Agric. Research center, Ministry of Agric.

Finally my sincere thanks that I feel Indebted to My father, husband, brother, friends and all colleagues that contributed and supported me in any way to fulfill this work.

To my mother God rest her soul and that have a great credit to my success, my mother taught me that first grabbed the pen and how can study my lessons and learn .

Thanks for her prayer

God put her in Paradise and more merciful for my mother.

CONTENTS

		Pag
		e
	LIST OF TABLES	
	LIST OF FIGURES	
	LIST OF ABBREVIATIONS	
I.	INTRODUCTION	1
II.	REVIEW OF LITERATURE	6
1.	Impurities in pesticides	6
2.	Toxicity of pesticides impurities	15
3.	Analytical methods for pesticides impurities	24
Ш.	MATERIAL AND METHODS	30
1.	Pesticides used	30
2.	Sampling	39
3.	Confirmation analysis by GC-MS, FTIR and NMR	40
3.1.	Gas Chromatography- Mass Spectroscopy	40
3.2.	Infrared spectroscopy	41
3.3.	Nuclear magnetic resonance	41
3.3.1	Factor reflect on chemical shift	41
3.3.1.1.	Intramoleclar factors	41
3.3.1.1.1	Electro negativity (Inductive effect)	42
3.3.1.1.2	Anisotropy of chemical bonds	42
3.3.1.1.3	Van der Waals	4.0
	deshielding	42
3.3.1.2	Effect of concentration, solvent and temperature	42
3.3.1.3.	Hydrogen bonding	43
3.4.	Dertemination of physico-chemical properties	43
3.4.1.	Acidity and alkalinity (titration method)	43
3.4.2.	Melting point	43
IV.	RESULTS AND DISCUSSION	44
1.	Carbosulfan	44
1.1.	Specification of carbosulfan TC	44
1.2.	Physical and chemical properties of carbosulfan TC	44
1.3.	Conformation analysis of generic carbosulfan TC	45
1.3.1	GC-Ms analysis	45
1.3.1.1	Identification of carbosulfan	46
1.3.1.2	Identification of impurities	47
1.3.2	Identification of carbosulfan by NMR	48

1.3.3	Identification of carbosulfan TC by FTIR	49
1.3.4	Physical and Chemical Properties of carbosulfan TC	50
2.	Chloropyrifos	51
2.1.	Specification of chlorpyrifos TC	51
2.2	Physical and Chemical Properties of chloropyrifos TC	51
2.3	Conformation analysis of generic chloropyrifos TC	52
2.3.1	GC-Ms analysis	52
2.3.1.1	Identification of chlorpyrifos TC	53
2.3.1.2	Identification of impurities	54
2.3.1.2.1	Chlorpyrifos sample from Denmark	54
2.3.1.2.2	Chlorpyrifos sample from China	58
2.3.2	Identification of chlorpyrifos by NMR	60
2.3.3	Identification of chlorpyrifos TC by FTIR	62
2.3.4	Physical and chemical properties	63
3	Chlorpyrifos- methyl	65
3.1	Specification of chloropyrifos- methyl TC	65
3.2	Physical and Chemical Properties of chloropyrifos-	
	methyl.TC	65
3.3	Conformation analysis of generic chloropyrifos- methyl	
	TC	66
3.3.1	GC-Ms analysis	66
3.3.1.1	Identification of chlorpyrifos- methyl TC	67
3.3.1.2	Identification of impurities	68
3.3.1.2.1	Chlorpyrifos - methyl sample from Denmark	68
3.3.1.2.2	Chlorpyrifos- methyl sample from China (A)	68
3.3.1.2.3	Chlorpyrifos- methyl sample from China (B)	70
3.3.2	Identification of chlorpyrifos - methyl by NMR	74
3.3.3	Identification of technical chlorpyrifos - methyl by	
	FTIR	77
3.3.4	Physical and chemical properties	79
4	Difenoconazole	81
4.1	Specification of difenoconazole TC	81
4.2	Physical and Chemical Properties of difenoconazole	
	TC	81
4.3	Conformation analysis of generic difenoconazole TC.	82
4.3.1	GC-Ms analysis	82
4.3.1.1	Identification of difenoconazole TC	83
4312	Identification of impurities	84

4.3.2	Identification of difenoconazole by NMR
4.3.3	Identification of difenoconazole TC by FTIR
4.3.4	Physical and chemical properties
5	Fenamiphos
5.1	Specification of Fenamiphos TC
5.2	Physical and Chemical Properties of Fenamiphos TC
5.3	Conformation analysis of generic Fenamiphos TC
5.3.1	GC-Ms analysis
5.3.1.1	Identification of Fenamiphos TC
5.3.1.2	Identification of impurities
5.3.2.	Identification of Fenamiphos by NMR
5.3.3	Identification of Fenamiphos TC by FTIR
5.3.4	Physical and chemical properties
6	Flusilazole
6.1	Specification of Flusilazole TC
6.2	Physical and Chemical Properties of Flusilazole TC
6.3	Conformation analysis of generic Flusilazole TC
6.3.1	GC-Ms analysis
6.3.1.1	Identification of Flusilazole TC
6.3.1.2	Identification of impurities
6.3.2.	Identification of Flusilazole TC by NMR
6.3.3	Identification of Flusilazole TC by FTIR
6.3.4	Physical and chemical properties FlusilazoleTC
7	Lambda-cyhalothrin
7.1	Specification of Lambda-cyhalothrin TC
7.2	Physical and Chemical Properties of Lambda-cyhalothrin
	TC
7.3	Conformation analysis of generic Lambda-cyhalothrin
	TC
7.3.1	GC-Ms analysis
7.3.1.1	Identification of Lambda-cyhalothrin TC
7.3.1.2	Identification of impurities
7.3.1.2.1	Lambda-cyhalothrin samples from (Egypt and chima)
7.3.2.	Identification of Lambda-cyhalothrin by NMR
7.3.3	Identification of Lambda-cyhalothrin TC by FTIR
7.3.4	Physical and chemical properties of Lambda-cyhalothrin
	TC
8	Metalaxyl

8.1	Specification of Metalaxyl TC
8.2	Physical and Chemical Properties of Metalaxyl TC
8.3	Conformation analysis of generic Metalaxyl TC
8.3.1	GC-Ms analysis
8.3.1.1	Identification of Metalaxyl TC
8.3.1.2	Identification of impurities
8.3.2.	Identification of Metalaxyl TC by NMR
8.3.3	Identification of Metalaxyl TC by FTIR
8.3.4	Physical and chemical properties of Metalaxyl TC
9	Oxyfluorfen
9.1	Specification of Oxyfluorfen TC
9.2	Physical and Chemical Properties of Oxyfluorfen TC
9.3	Conformation analysis of generic Oxyfluorfen TC
9.3.1	GC-Ms analysis
9.3.1.1	Identification of Oxyfluorfen TC
9.3.1.2	Identification of impurities
9.3.2.	Identification of Oxyfluorfen TC by NMR
9.3.3	Identification of Oxyfluorfen TC by FTIR
9.3.4	Physical and chemical properties of Oxyfluorfen TC
10	Prochloraz
10.1	Specification of Prochloraz TC
10.2	Physical and Chemical Properties of Prochloraz TC
10.3	Conformation analysis of generic Prochloraz TC
10.3.1	GC-Ms analysis
10.3.1.1	Identification of Prochloraz TC
10.3.1.2	Identification of impurities
10.3.2.	Identification of Prochloraz TC by NMR
10.3.3	Identification of Prochloraz TC by FTIR
10.3.4	Physical and chemical properties Prochloraz TC
11	Thiobencarb
11.1	Specification of Thiobencarb TC
11.2	Physical and Chemical Properties of Thiobencarb TC
11.3	Conformation analysis of generic Thiobencarb TC
11.3.1	GC-Ms analysis
11.3.1.1	Identification of Thiobencarb TC
11.3.1.2	Identification of impurities
11.3.2.	Identification of Thiobencarb TC by NMR
11.3.3	Identification of Thiobencarb TC by FTIR

11.3.4	Physical and chemical properties	151
\mathbf{V}	DISCUSSION	152
VI	SUMMERY AND CONCLUSION	163
VII	REFERANCES	168

LIST OF TABLES

		Page
Table(1):	Carbosulfan	30
Table(2)	Chlorpyrifos	31
Table (3):	Chlorpyrifos –methyl	32
Table(4):	Difenoconazole	33
Table(5):	Fenamiphos	33
Table(6):	Flusilazole	34
Table(7):	Lambda-cyhalothrin	35
Table(8):	Metalaxyl	36
Table(9):	Oxyflurofen	37
Table (10):	Prochloraz	37
Table(11):	Thiobencarb	38
Table(12):	Pesticides used in experiment	39
T 11 (12)		
Table(13):	ysical and chemical properties of carbosulfan TC.	44
Table(14):	repretation of ¹ H-NMR spectral data of carbosulfan TC.	49
Table(15):	repretation of FTIR spectrum of carbosulfan TC.	50
Table(16):	cidity and alkalinity of carbosulfan TC.	50
Table(17):	Physical and chemical properties of chlorpyrifos TC	51
Table (18):	Interpretation of ¹ H-NMR spectral data of chlorpyrifos TC(Denmark).	61
Table(19):	Interpretation of ¹ H-NMR spectral data of chlorpyrifos TC (China).	61
Table(20):	Interpretation of FTIR spectrum of chlorpyrifos TC (Denmark).	62
Table(21):	Interpretation of FTIR spectrum of chlorpyrifos TC(China).	63
Table(22):	Melting point of both original and generic samples of	63
— 11 (22)	chlorpyrifos TC.	
Table(23):	Acidity and alkalinity of chlorpyrifos TC samples.	64
Table(24):	Physical and chemical properties of technical chlorpyrifos- methyl.	65
Table(25):	Interpretation of ¹ H-NMR spectral data of technical	75
	chlorpyrifos-methyl.	, 5
Table(26):	Interpretation of ¹ H-NMR spectral data of technical	76
	chlorpyrifos-methyl [China(A)].	
Table(27):	Interpretation of ¹ H-NMR spectral data of technical	77

	chlorpyrifos-methyl [China(B)].	
Table(28):	Interpretation of FTIR spectrum of technical chlorpyrifos-	
	methyl(Denmark).	78
Table(29):	Interpretation of FTIR spectrum of technical chlorpyrifos-	
	methyl [China(A)].	78
Table(30):	Interpretation of FTIR spectrum of technical chlorpyrifos-	
	methyl [China(B)].	79
Table(31):	Melting point of both original and generic samples of	
	chlorpyrifos-methyl TC.	79
Table(32):	Acidity and alkalinity of chlorpyrifos-methyl TC samples	80
Table (33):	Physical and chemical properties of difenoconazole TC.	81
Table (34):	repretation of ¹ H-NMR spectral data of difenoconazole TC.	85
Table (35):	repretation of FTIR spectrum of difenoconazole TC.	86
Table (36):	lelting point of both original and generic difenoconazole.	87
Table(37):	Acidity and alkalinity of difenoconazole	87
Table (38):	Physical and chemical properties of Fenamiphos TC	88
Table(39):	Interpretation of ¹ H-NMR spectral data of technical	
	Fenamiphos	93
Table (40):	Interpretation of FTIR spectrum of technical Fenamiphos.	94
Table (41):	Melting point of both original and generic Fenamiphos	94
Table(42):	idity and alkalinity of Fenamiphos TC.	94
Table (43):	Physical and chemical properties of flusilazole TC.	95
Table (44):	Interpretation of ¹ H-NMR spectral data of technical	
	flusilazole	99
Table (45):	Interpretation of FTIR spectrum of flusilazole TC (China).	100
Table (46):	Melting point of both original and generic flusilazole	100
Table (47):	Acidity and alkalinity of flusilazole	101
Table (48):	Physical and chemical properties of lambda-cyhalothrin	
	TC.	102
Table (49):	Interpretation of ¹ H-NMR spectral data of technical	
	lambda-cyhalothrin.	109
Table (50):	Interpretation of ¹ H-NMR spectral data of technical	
	lambda-cyhalothrin.	109
Table (51):	Interpretation of FTIR spectrum of technical lambda-	110
	cyhalothrin.	
Table(52):	Interpretation of FTIR spectrum of technical lambda-	111
	cyhalothrin.	
Table (53):	Melting point of lambda-cyhalothrin samples.	111

Table(54):	idity and alkalinity of lambda-cyhalothrin.	112
Table(55):	Physical and chemical properties of Metalaxyl TC.	113
Table(56):	Interpretation of ¹ H-NMR spectral data of metalaxyl TC.	120
Table(57):	Interpretation of FTIR spectrum of metalaxyl TC(Hong	
	kong).	121
Table(58):	Melting point of both original and generic metalaxyl.	121
Table(59):	Acidity and alkalinity of metalaxyl TC.	122
Table (60):	Physical and chemical properties of Oxyfluorfen TC.	123
Table (61):	Interpretation of ¹ H-NMR spectral data of Oxyfluorfen TC	129
Table(62):	Interpretation of FTIR spectrum of Oxyfluorfen TC(China).	130
Table (63):	Melting point of both original and generic Oxyfluorfen	130
Table(64):	Acidity and alkalinity of Oxyfluorfen	131
Table(65):	Physical and chemical properties of technical prochloraz	132
Table (66):	Interpretation of ¹ H-NMR spectral data of prochloraz TC	140
Table (67):	Interpretation of FTIR spectrum of prochloraz TC	141
Table (68):	Melting point of both original and generic prochloraz.	141
Table (69):	Acidity and alkalinity of prochloraz	142
Table (70):	Physical and chemical properties of technical thiobencarb	143
Table(71):	Interpretation of ¹ H-NMR spectral data of thiobencarb	
	TC(China).	150
Table(72):	Interpretation of FTIR spectrum of thiobencarb TC(China).	151
Table (73):	Acidity and alkalinity of thiobencarb.	151

LIST OF FIGURES

Fig.No.		page
Fig. (1):	Gas Chromatography (GC) of carbosulfan TC	45
Fig.(2):	Mass spectrometry (MS) of carbosulfan TC	45
Fig. (3):	Suggested fragmentation pathways of carbosulfan TC	٤٦
Fig. (4):	Mass spectrometry (MS) of 2,3-dihydro-2,2-	٤٧
	dimethylbenzofuran-7-yl methylcarbamate (carbofuran)	
Fig.(5):	Suggested fragmentation pathways of 2,3-dihydro-2,2-	٤٧
	dimethylbenzofuran-7-yl methylcarbamate	
Fig. (6):	¹ H-NMR spectral data of standard carbosulfan	48
Fig. (7):	¹ H-NMR spectral data of carbosulfan TC (China)	٤٨
Fig.(8):	FTIR spectrum of carbosulfan TC	٤٩
Fig.(9):	Gas Chromatography (GC) of standard chlorpyrifos	07
Fig. (10):	Mass spectrometry (MS) of standard chlorpyrifos	52
Fig. (11):	Suggested fragmentation pathways of chlorpyrifos	٥٣
Fig. (12):	Gas Chromatography (GC) of technical chlorpyrifos	0 {
	(Denmark)	
Fig. (13):	Mass spectrometry (MS) of O,O-diethyl O-6-chloro-2-	00
	pyridyl phosphorothioate (Impurity I)	
Fig. (14):	fragmentation of O,O-diethyl O-3-chloro-2-pyridyl	
	phosphorothioate	55
Fig. (15):	Mass spectrometry (MS) of O,O-diethyl O-5,6-dichloro-	٥٦
	2-pyridyl phosphorothioate (Impurity II)	
Fig.(16):	fragmentation of O,O-diethyl O-5,6-dichloro-2-pyridyl	٥٦
	phosphorothioate	
Fig. (17):	Mass spectrometry (MS) of O-ethyl O,O-bis(3,5,6-	٥٧
	trichloro pyridine-2-yl) phosphorothioate (Impurity III)	
Fig.(18):	fragmentation of O-ethyl O,O-bis(3,5,6-trichloro	
	pyridine-2-yl) phosphorothioate	57
Fig.(19):	Gas Chromatography (GC) of technical chlorpyrifos	
	(China)	58
Fig.(20):	Mass spectrometry (MS) of O-ethyl O,O-bis(3,5,6-	
_	trichloro pyridine-2-yl) phosphorothioate	58
Fig.(21):	fragmentation of O-ethyl O,O-bis(3,5,6-trichloro	
	pyridine-2-yl) phosphorothioate	59
Fig.(22):	¹ H-NMR spectral data of standard chlorpyrifos	60
Fig.(23):	¹ H-NMR spectral data of chlorpyrifos TC (Denmark)	60