

Ain Shams University Faculty of Engineering

Electronics and Communications Engineering Department

Modeling and Simulation of Carbon Nanotube Field Effect Transistors

A THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy
In
Electronics and Communications Engineering

By Mostafa Hassan Fedawy

M. Sc. in Electronics and Communications Engineering AASTMT - 2006

Supervised by

Prof. Dr. Adel Al-Hennawy

Electronics and Communications Eng. Department Faculty of Engineering - Ain Shams University

Prof. Dr. Wael Fikry Farouk

Engineering Physics and Mathematics Department Faculty of Engineering - Ain Shams University

Prof. Dr. Hazem Hassan Ali

Electronics and Communications Eng. Department Faculty of Engineering and technology - AASTMT

Cairo, 2014

Ain Shams University Faculty of Engineering Cairo-Egypt

Examiners' Committee

Modeling and Simulation of Carbon Nanotube Field Effect Transistors

Mostafa Hassan Abbass Fedawy

Faculty of Engineering -AASTMT

Name:

Thesis:

Degree: Doctor of Philosophy in Electronics and Communications Engineering. Title, Name and Affiliation **Signature** Prof. Dr. Mostafa Hussien Ali Electronics and Communications Eng. Department Faculty of Engineering -AASTMT Prof. Dr. El-Sayed Mahmoud El-Rabaie Faculty of Electronics Engineering, Menouf Prof. Dr. Adel Al-Hennawy Electronics and Communications Eng. Department Faculty of Engineering -Ain Shams University Prof. Dr. Hazem Hassan Ali Electronics and Communications Eng. Department

Date: 11 / 2 /2014

STATEMENT

This thesis is submitted to Ain Shams University in partial fulfillment of

the requirements for the degree of Doctor of Philosophy in Electronics and

Communications Engineering.

The work included in the thesis was carried out by the author at the

Electronics and Communications Department, Faculty of Engineering, Ain

Shams University, Cairo, Egypt.

No part of this thesis has been submitted for a degree or a qualification at

any other university or institute.

Name: Mosatfa Hassan Abbass Fedawy

Signature:

Date:

CURRICULUM VITAE

Name of Researcher Mostafa Hassan Abbass Fedawy

Date of Birth 14/11/1979

Place of Birth Alex, Egypt

First University Degree B. Sc. in Electrical Engineering

Name of University AASTMT

Date of B. Sc. Degree June 2001

Last Degree M. Sc. in Electronics and Communications Engineering

communications Engin

Name of University AASTMT

Date of Degree Feb. 2006

ABSTRACT

Mostafa Hassan Abbass Fedawy, "Modeling and Simulation of Carbon Nanotube Field Effect Transistors," Doctor of Philosophy Dissertation, Ain Shams University, 2013.

Aggressive scaling of silicon based transistors has led to higher integration density, higher circuits performance, and low power consumption. However, it is expected to reach to its limit by 2020. Carbon Nanotube Field Effect Transistor (CNTFET) is currently considered as a promising nanoelectronic devices because of their small nanometric size and their ability to carry high current. Moreover, it can avoid most of traditional Metal Oxide Semiconductor Field Effect Transistor (MOSFET) limitations.

The present work proposed a simple and accurate numerical model for MOSFET-Like Single-Wall Carbon Nanotube Field Effect Transistors (SW-CNTFET). The tight bending and zone folding methods are used to calculate the subband minima accurately. Unlike the previous numerical models, our proposed model can be used for any Carbon Nanotube (CNT) chirality as long as the CNT is semiconductor. Moreover, it is applicable for both low and high gate voltage application; up to 3 V. In addition, we investigate the influence of temperature on the transfer and output characteristics of the MOSFET-Like SW-CNTFET.

The effect of the number of subbands in the drain current calculation is studied. Our results prove that the higher subbands have a drastically effect on the saturation drain current especially for high gate voltage. However, the subthreshold region characteristics are depended only on the first subband. Furthermore, we study the onset-voltage, the On-/Off-current ratio, and the sub-threshold swing of the SW-CNTFETs. Results show that, the onset-voltage is decreased linearly with increasing the temperature. Moreover, the rate of change in the onset-voltage with temperature is almost independent on the drain voltage. After that, the dielectric material and the dielectric thickness effects on CNTFET performance are studded.

Any numerical model cannot couple with the circuit simulations. For this reason, we propose a fast and accurate empirical model to calculate the subband minima of the CNTFET's channel. Moreover, we proposed an analytical model for the capacitance of CNTFET. Our proposed model shows a good agreement with the numerical model; where it presents a root mean square error within 3.4 %.

Key Words: CNT transistor model, CNTFET varactors, Subband empirical model, MOSFET-Like CNTFET.

ACKNOWLEDGEMENT

My thanks are wholly to ALLAH who has helped me all the way to complete this work successfully.

I am honored that my work has been supervised by **Prof. Dr. Adel Al hennawy**, **Prof. Dr. Wael Fikry**, and **Prof. Dr. Hazem Hassan** and their suggestions that improved this work. I am greatly indebted to them for their valuable advises, continuing support and guidance through the preparation of this work. I learned so many valuable things from them.

I would like also to thank Dr. Tarek Abd Al Kader for all what he has given to me from his noteworthy experience and knowledge.

I would like to thank my parents. Their patience, care, love and encouragement are what guided me through my whole life. I pray to ALLAH that I will always be a good faithful son to them.

Finally, no words are sufficient to express my deep gratitude toward my wife and my kids Al-Hassan, Haneen, Hala, and Habeba. They share my difficult times with pleasure.

CONTENTS

CONTENTS	vii
LIST OF FIGURES	X
LIST OF SYMBOLS	xiv
LIST OF ABBREVIATIONS	xix
INTRODUCTION	1
CHAPTER 1	
CARBON NANOTUBE BACKGROUND	3
1.1 Allotropes Of Carbon	3
1.2 Graphene	4
1.2.1 Graphene reciprocal lattice	
1.3 Overview of Carbon Nanotubes	10
1.3.1 Carbon Nanotube Production	10
1.3.1.1 Arc Discharge	11
1.3.1.2 Laser Ablation	
1.3.2 Physical Structure of CNT	
1.3.3 Electrical properties of CNT	16
1.4 Carbon Nanotube Field Effect Transistors	17
1.4.1 Type of CNTFET	18
1.4.1.1 Back-gated CNTFET	
1.4.1.2 Top-gated CNTFET	
1.4.1.2.1 How to build TG-CNTFET	
1.4.1.2.2 p-CNT, n-CNT, and ambipolar transistors	
1.4.1.3 Electrolyte Gated CNFET	
1.4.1.4 Coaxial CNFETs	
1.4.1.4.1 Vertical CNTFET	
1.4.1.6 Ballistic CNTFET	
1.4.2 Operation of FETs	
1.4.1.1 Conventional MOSFET Operation	
1.4.1.2 CNTFETs operation	
1.4.1.2.1 SB-CNTFET	37

1.4.	1.2.1 MOSFET-Like CNFET	38
CHAP	<u>ΓΕR 2</u>	
MODE	LING OF SINGLE-WALL CARBON NANOTUBE FETs	40
2.1 Ge	neric Model For Ballistic Nanotransistors	41
2.1.2	Carrier density model Self-consistent field Current equation	46
CHAP' ENHA	TER 3 NCEMENT MODEL FOR CARBON NANOTUBE FETs	54
3.1 Pro	posed Model	55
3.1.2	Carrier density model	59
3.2 I-V	Characteristics and Model Verification	65
3.2.1	SW-CNTFETs specification	70
3.3 Ter	nperature Effects	76
3.4 Die	lectric material Effects	83
	Effects of the dielectric constant	
<u>CHAP</u>		
	MODEL FOR CARBON NANOTUBES VARACTOR AND	
SUBBA	AND MINIMA	90
4.1 Pro	pposed Model	91
	Subband minima model	
42 Mo	del Verification	96

CHAPTER 5	
CONCLUSIONS AND FUTURE WORK	103
5.1 Conclusions	103
5.2 Future Work	104
REFERENCES	100

LIST OF FIGURES

Figure 1.1: a) Spherical fullerene which is called buckyballs. b) Hollow tube fullerene or carbon nanotube
Figure 1.2: A single sheet of graphene
Figure 1.3: Real space representation of the graphene lattice
Figure 1.4: Reciprocal space representation of a graphene lattice with the unit vectors and the high-symmetry points
Figure 1.5: a) First Brillion zone of graphene; b) 3D plot of graphene band structure.
Figure 1.6: A folding graphite layers 9
Figure 1.7: Schematic diagram of an arc-discharge system
Figure 1.8: Schematics of a laser ablation setup
Figure 1.9: Definition of chiral vectors and translation vector
Figure 1.10: Different shapes of CNT. a) (5,0) Zigzag CNT. b) (3,3) armchair CNT. c) (3,2) chiral CNT
Figure 1.11: The single- and multi-walled carbon nanotubes16
Figure 1.12: The cross section along the channel for (a) CNTFET and (b) MOSFET
Figure 1.13: a) Back-Gated Carbon Nanotube Field Effect Transistor (BG-CNTFET). (b) Schematic cross section of top gate CNFET showing the gate, source and drain electrodes
Figure 1.14: Conductance vs. gate voltage of a p-type SW-NTFET20
Figure 1.15: a) The transfer characteristics for SW-CNTFET. b) The output characteristic for SW-CNTFET
Figure 1.16: The output characteristic of a top gate p-type CNFET with a Ti gate and a gate oxide thickness of 15 nm
Figure 1.17: A comparison between the output characteristics of BG- and TG-CNTFET
Figure 1.18: Process of manufacturing a TG- CNTFET24
Figure 1.19: P-type CNTFET band structure
Figure 1.20: N-type CNTFET band structure with annealing process25
Figure 1.21: Schematic diagram of the potassium doping26
Figure 1.22: Band Structure for n-CNFET with doped and heavily doped26
Figure 1.23: Band structure for ambipolar state

Figure 1.24: Electrolyte gated carbon nanotube transistors28
Figure 1.25: Schematic of the electrolyte gate CNT transistors29
Figure 1.26: Conductance G versus water gate voltage V_{wg} for (a) $L{=}$ 1 $\mu m,~d=1.1$ nm. (b) $L=1.4$ $\mu m,~d=3$ nm. (c) $L=$ 2.2 $\mu m,~d=4.3$ nm29
Figure 1.27: I-V characteristics at different Vg for an Electrolyte Gated CNTFET
Figure 1.28: Schematic of a Vertical CNTFET
Figure 1.29: The building processes of a vertical CNTFET32
Figure 1.30: Schematic diagrams of band bending induced in a MOSFET. (a) A positive gate voltage. (b) A negative gate voltage
Figure 1.31: The energy band diagram for (a) SB-CNFET (b) MOSFET-like CNTFET
Figure 1.32: P-type CNT energy band diagram
Figure 1.33: Structure of the MOSFET-like CNTFETs38
Figure 1.34: The energy band diagram for C-CNTFET38
Figure 2.1: A simple nanotransistor model
Figure 2.2: A simple capacitive circuit model for nanotransistors46
Figure 2.3: Plot of (V $_{\!\! G}$ - $U_{\!\! SCF}$) versus V $_{\!\! G}$ for different values of V $_{\!\! DS}$
Figure 2.4: Plot of U_{SCF} versus V_{G} for different values of V_{DS} 50
Figure 2.5: The effect of CNT diameter on the transfer characteristics. \dots 52
Figure 2.6:The effect of CNT diameter on the output characteristics52
Figure 3.1: Energy band diagram of the carbon nanotube at Γ point56
Figure 3.2: The output characteristics of SW-CNTFETs at chirality (19, 0), d = 1 nm. 66
Figure 3.3: The output characteristics of SW-CNTFETs at chirality (13, 0), $d=1$ nm, and $V_{ds}=1V$
Figure 3.4: The transfer characteristics of SW-CNTFETs at $V_{ds}=1\ V$ and chirality (26, 0), $d=2\ nm$.
Figure 3.5: The transfer characteristics of SW-CNTFETs at chirality (26,0), d = 2 nm
Figure 3.6: The contribution of the 1, 3, and 4 subbands in the drain current calculation, d = 1 nm
Figure 3.7: The contribution of the 1, 2, 4, and 6 subbands in the drain

current calculation, d = 2 nm
Figure 3.8: The drain current versus the gate-source voltage at $V_{ds} = 0.2$ and 1 V
Figure 3.9: The effect of the drain-source voltage on the sub-threshold swing at room temperature
Figure 3.10: The onset-voltage versus the drain-source voltage at room temperature and $d = 2$ nm
Figure 3.11: The Off-leakage current versus the drain-source voltage at $d=2$ nm, and $V_{\rm gs}=0$ V74
Figure 3.12: The On-state current against the drain-source voltage at d = 2 nm and $V_{\rm gs} = V_{\rm ds}$.
Figure 3.13: On-/Off-current ration with the drain-source voltage. The ambient temperature is 300 and the CNT diameter is 2 nm
Figure 3.14: The output characteristics of SW-CNTFET using one-subband model at temperature 300 and 500 K
Figure 3.15: The output characteristics of SW-CNTFET using four-subband model at temperature 300 and 500 K
Figure 3.16: The transfer characteristics of SW-CNTFET using one-subband model at temperature 300 and 500 K
Figure 3.17: The transfer characteristics of SW-CNTFET using four-subband model at temperature 300 and 500 K
Figure 3.18: The temperature effect on the onset-voltage at $V_{ds} = 100 \text{ mV}$ and 1 V
Figure 3.19: Temperature effect on the sub-threshold swing at $V_{ds} = 100$ mV and 1V
Figure 3.20: The Off-leakage current (V_{gs} =0) and the On-state current (V_{gs} = V_{ds}) versus the temperature
Figure 3.21: On-/Off-current ratio versus the temperature at $V_{ds} = 100 \text{ mV}$ and $1V$
Figure 3.22: The transfer characteristics of SW-CNTFETs at chirality $(26, 0)$, $d = 2$ nm and dielectric thickness $= 1.5$ nm
Figure 3.23: The sub-threshold region of SW-CNTFETs at chirality $(26, 0)$, $d = 2$ nm and dielectric thickness $= 1.5$.
Figure 3.24: The dielectric constant effect on the onset-voltage at $V_{ds} = 1V.87$
Figure 3.25: The On-state current against the dielectric constant at $d=2$ nm and $V_{gs}=V_{ds}=1$ V

Figure 3.26: On-/Off-current ratio versus the dielectric constant at $V_{ds} = 1V$
Figure 3.27: The transfer characteristics of SW-CNTFETs at chirality $(26, 0)$, $d = 2$ nm and dielectric thickness is 1.5, 3, 4.5 nm90
Figure 3.28: The sub-threshold region of SW-CNTFETs chirality (26, 0), $d = 2$ nm, and dielectric thickness is 1.5, 3, 4.5 nm90
Figure 4.1: a) The energy band diagram of CNT at a zero drain bias. b) The energy band diagram at positive $V_{\rm gs}$.
Figure 4.2: The capacitor equivalent network95
Figure 4.3: The subband minima versus the number of subband at chirality (13,0) and (32,0), diameter equal to 1 and 2.5 nm, respectively99
Figure 4.4: The carrier density for the first subband versus the gate voltage at 1 nm CNT diameter
Figure 4.5: The contribution of the first four sub-bands in carrier density calculations versus the gate voltage at $d_t = 1$ nm
Figure 4.6: The C-V characteristics of the quantum capacitance for the first three subbands
Figure 4.7: The quantum capacitance (C_Q) of the first four subbands101
Figure 4.8: A comparison between the numerical and proposed model of the quantum capacitance (C_Q) of the first four subbands
Figure 4.9: The total capacitance of the first four subbands

LIST OF SYMBOLS

a'	Lattice constant
a_1	First basis unit vector of graphene
a_2	Second basis unit vector of graphene
a_{c-c}	Carbon-carbon distance
A_{P}	Fitting parameter for p th subband
b_1	First reciprocal lattice vector
b_2	Second reciprocal lattice vector
В	Number of basis function in a unit cell
B_{P}	Fitting parameter for p th subband
C_D	Drain capacitance
C_G	Gate capacitance
C_h	Chiral vector
C_{ox}	Oxide capacitance
C_{P}	Fitting parameter for p th subband
C_{Q}	Quantum capacitance
C_s	Source capacitance
d	Nanotube diameter
D(E)	Density of states
$D_1(E)$	Density-of-states filled from the source contact
$D_2(E)$	Density-of-states filled from the drain contact
$D_{NT}(E)$	Density of states of the carbon nanotubes
$D_{spin}(E)$	Density of states per spin
E	Total energy
E_{C}	Conduction band edge
E_{cp}	Conduction band edge of p th subband
E_{f}	Fermi level
EE	Source Fermi energy

E_{F2}	Drain Fermi energy
E_{Fo}	Equilibrium Fermi level
E_{g}	Bandgap of a single wall nanotube
E_{i}	Intrinsic Fermi level
$E_{\rm o}$	Midband gap energy level
E_{V}	Valence band edge
$f_o(E)$	Equilibrium Fermi function
$F_D(E)$	Fermi-Dirac distribution at the $E = E_{F2}$
$F_s(E)$	Fermi-Dirac distribution at the $E = E_{F1}$
g_{o}	Metallic density of states
G	Conductance
G_{g}	Greatest common divisor of (2m+n) and (2n+m)
h	Planck's constant
ħ	Planck's constant divided by 2π
I_d	Drain current
I_{Dp}	Current from the drain to the channel for p th subband
I_L	Current from the left contact to the channel
I_{OFF}	Off-leakage current
I_{ON}	On-state current
I_R	Current from the right contact to the channel
I_{Sp}	Current from the source to the channel for p th subband
$\mathbf{k}_{\mathbf{x}}$	Wave vector in x-direction
$\mathbf{k}_{\mathbf{y}}$	Wave vector in y-direction
K	Allowed wave vectors along the axial direction for a CNT
\mathbf{K}_{a}	Reciprocal lattice vector along the nanotube axis
K_{B}	Boltzmann constant
K_{c}	Reciprocal lattice vector along the circumferential direction
1	Integer number