

Periodically Autoregression Processes and Some of Its Aspects

Thesis

Submitted for the degree

of

DOCTOR OF PHILOSOPHY

in

Pure Mathematics

Mathematical Statistics

by

Diab Ibraheem Diab Al-Awar

Mathematics Department

Faculty of Women

Ain Shams University

Supervised by

Prof. Dr. Samia S. Al Azab

Dr. Raid B. Salha

Prof. of Applied Mathematics

Faculty of Women

Ain Shams University

Associate Prof. of Mathematical Statistics

Faculty of Science

Islamic University of Gaza

Dr. Hazem I. El Shekh Ahmed

Assistant Prof. of Mathematical Statistics
Faculty of Science
Al-Quds Open University of Gaza

2016

Ain Shams University
Faculty of Women for Art's, Science and Education
Mathematics Department

PH.D. Thesis (Pure Mathematics) Mathematical Statistics

Title of Thesis:

Periodically Autoregression Processes and Some of Its Aspects

Thesis Supervisors

Prof. Dr. Samia S. Al Azab

Dr. Raid B. Salha

Prof. of Applied Mathematics
Faculty of Women
Ain Shams University

Associate Prof. of Mathematical Statistics
Faculty of Science
Islamic University of Gaza

Dr. Hazem I. El Shekh Ahmed

Assistant Prof. of Mathematical Statistics
Faculty of Science
Al-Quds Open University of Gaza

Dedication

To

My Parents Ibraheem and Zainab

My Brother Loay

My Sisters Marwa, Ikhlas, Sarah and Hadeel

Acknowledgments

I would like to express my sincere thanks and gratitude to Almighty for his blessings and keeping me.

I would like to express my sincere appreciation and thanks to my supervisors Prof. Dr. Samia S. Al Azab, Dr. Raid B. Salha and Dr. Hazem I. El Shekh Ahmed for there ceaseless help and supervision during the preparation of this thesis.

Also, I would like to express my sincere thanks to Prof. Dr. Mostafa M. Mohie El-din and Prof. Dr. Mohammed Abdul-Wahhab Mahmoud for there great help and note.

Also, I would like to express my sincere thanks to my friends specially for Akram Abu Jazar, Mohammed Al-Saedy, Mohammed Abu-Moaileq, Karam Al-Agha, Hosam Nijem and Amr Al-Nwawy for there great help.

At the last but not least, I am extremely and sincerely thankful to my parents Ibraheem and Zainab those love, care and sacrifice enabled me to reach this level of learning and to my brother Loay and sisters Marwa, Ikhlas, Sarah and Hadeel.

Contents

A	bstra	ıct		iv
Pa	aram	eters a	and Abbreviations	vi
Sı	ımm	ary		viii
1	INT	rod	UCTION	1
	1.1	Ordin	ary Time Series	4
	1.2	Time	Series Models	6
		1.2.1	Autoregression models	6
		1.2.2	Moving average models	8
		1.2.3	Autoregression moving average models	9
	1.3	Multi	variate Time Series Models	10
		1.3.1	Vector autoregression models	13
		1.3.2	Vector moving average models	15
		1.3.3	Vector autoregression moving average models	17
	1.4	Stand	ard Multi-companion Matrices	17
2	PE	RIODI	C TIME SERIES MODELS	22
	2.1	Period	dically Correlated Time Series	22
	2.2	Period	lically Correlated Time Series Models	23
		2.2.1	Periodically autoregression models and its representation	24
		2.2.2	Periodically moving average models and its representation	32
		2.2.3	Periodically autoregression moving average models and its representation	. 37
	2.3	The R	elationship between Periodically Correlated Process and its Multivariate	
		Statio	nary Process	39
	2.4	Identi	fication of Periodic Autoregressive Moving-Average Time Series Models	41

		2.4.1	Introduction	41
		2.4.2	Steps for model identification	42
		2.4.3	Periodic autocorrelation function of periodically autoregression mov-	
			ing average models	44
		2.4.4	Periodic partial autocorrelation function of periodically autoregression	
			moving average models	48
		2.4.5	Sample periodic autocorrelation function	50
		2.4.6	Simulation results	54
3	INV	ERSE	OF INVERTIBLE STANDARD MULTI-COMPANION MA-	
	\mathbf{TR}	ICES		59
	3.1	Introd	uction	59
	3.2	Inverse	e of Invertible Standard Multi-companion Matrices	60
	3.3	Multip	olication by Inverse of Invertible Standard Multi-companion Matrices .	62
	3.4	Factor	ization of Inverse of Invertible Standard Multi-companion Matrices	64
	3.5	Eigenv	values and Eigenvectors of Inverse of Invertible Standard Multi-companion	
		Matrio	ces	66
4	GE	NERA	TION OF PERIODICALLY AUTOREGRESSION MODELS US	3-
	INC	GINV	ERSE OF INVERTIBLE STANDARD MULTI-COMPANION	<u>.</u>
	MA	TRIC	ES	72
	4.1	Introd	uction	73
	4.2	Marko	v form of Periodically Autoregression Models	74
	4.3	Genera	ation Method	77
	4.4	Examp	ples	80
	Con	clusio	n	93
	Fut	ure wo	rk	95

References	96
Published Papers	102
Arabic Summary	

Abstract

This thesis is interested with some characteristics of a class periodically correlated time series models. We studied both periodically correlated time series models and multivariate models, and we discussed in this work many representations of periodically correlated models.

Periodic autoregressive moving average PARMA process extend the classical autoregressive moving average ARMA process by allowing the parameters to vary with seasons. Model identification is to establish an identification of a possible model based on an available realization which is the first step for fitting a model to time series data, i.e., determining the type of the model with appropriate orders. The periodic autocorrelation function (PeACF) and the periodic partial autocorrelation function (PePACF) serve as useful indicators of the correlation or of the dependence between the values of the series so that they play an important role in model identification. The identification is based on the cut-off property of the periodic autocorrelation function (PeACF) and the periodic partial autocorrelation function (PePACF). We modified an explicit expression for the asymptotic variance of the sample PeACF to be used in establishing its bands. Therefore, we used the structure of the periodic autocorrelation function which depends directly to the variance and we applied some simulated examples with program R which agrees well with the theoretical results.

The inverse of invertible standard multi-companion matrices will be derived and introduced as a new technique for generation of periodic autoregression models to get the desired spectrum and extract the parameters of the model from it when the information of the standard multi-companion matrices is not enough for the extracting of the parameters of the model.

We found an explicit expressions for the generalized eigenvectors of the inverse of invertible standard multi-companion matrices such that each generalized eigenvector depends on the corresponding eigenvalue therefore we obtained a parameterization of the inverse of invertible standard multi-companion matrix through the eigenvalues and these additional

quantities. The results can be applied to statistical estimation, simulation and theoretical studies of periodically correlated and multivariate time series in both discrete- and continuous-time series.

We gave a method for generation of periodically correlated and multivariate ARMA models whose dynamic characteristics are partially or fully specified in terms of spectral poles and zeroes or their equivalents in the form of eigen-(values/vectors) of associated model matrices by the inverse of invertible standard multi-companion(IISMC) when the information of the standard multi-companion matrices is not enough for the extracting of the parameters of the model. Our method is based on the spectral decomposition of inverse of invertible standard multi-companion(IISMC) matrices and their factorization into products of companion matrices, and we compared the gotten results from a real data with the last papers reached, and we found that our technique is better and consistent. Generated models are need in simulation but may also be used in estimation, some times to set sensible initial values of parameters for non-linear optimization.

Parameters and Abbreviations

Parameters

 μ_t : expectation of a time series

 σ_{ϵ}^2 : variance of a time series

 $\gamma_X(s,t)$: autocovariance function of a time series

 $\rho_X(h)$: autocorrelation function of a time series

 ϕ_p : autoregressive parameter in a AR(p)model

 θ_q : moving average parameter in a $\mathrm{MA}(q)\mathrm{model}$

 μ_t : mean vector of a multivariate time series

 $\Gamma(t+h,t)$: covariance matrix of a multivariate time series

 $\phi_{s,i}$: periodic autoregressive parameter in a PAR(p) model for

$$s = 0, ..., N - 1$$
 and $i = 1, ..., p, p = \max\{p_1, ..., p_d\}$

 $\Phi_i: m \times m$ matrix of periodic autoregressive parameters in a $\mathrm{PAR}(p)$

model for
$$i = 1, ..., p, p = \max\{p_1, ..., p_d\}$$

 $\theta_{s,i}$: periodic moving average parameter in a PMA(q) model for

$$s = 0, ..., N - 1$$
 and $i = 1, ..., q, q = \max\{q_1, ..., q_d\}$

 $\Theta_i: m \times m$ matrix of periodic moving average parameters in a PMA(p)

model for
$$i = 1, ..., q, q = \max\{q_1, ..., q_d\}$$