بسم الله الرحمن الرحيم

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المطومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوية نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of

15-25- c and relative humidity 20-40%

بعض الوثائـــق الاصليـة تالفـة

بالرسالة صفحات لم ترد بالاصل

SPRAY MEASUREMENTS OF COAL WATER SLURRY PRODUCED BY AN EFFERVESCENT ATOMIZER

Eng. Ahmed Samir Mohamed khalil
B. Sc. in Aircraft Mechanical Engineering

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in MECHANICAL POWER ENGINEERING

FACULTY OF ENGINEERING CAIRO UNIVERSITY GIZA, EGYPT JUNE 2005

SPRAY MEASUREMENTS OF COAL WATER SLURRY PRODUCED BY AN EFFERVESCENT ATOMIZER

by

Eng. Ahmed Samir Mohamed khalil

B. Sc. in Aircraft Mechanical Engineering

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in
MECHANICAL POWER ENGINEERING

Under Supervision of

Prof. Dr. Abdel Motaleb A. Mostafa

Mechanical Power Dept. Faculty of Engineering Cairo University

FACULTY OF ENGINEERING CAIRO UNIVERSITY GIZA, EGYPT JUNE 2005

SPRAY MEASUREMENTS OF COAL WATER SLURRY PRODUCED BY AN EFFERVESCENT ATOMIZER

by

Eng. Ahmed Samir Mohamed khalil

B. Sc. in Aircraft Mechanical Engineering

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in MECHANICAL POWER ENGINEERING

d El Chasly Member
Member Member
nestate Thesis Main Advisor

FACULTY OF ENGINEERING CAIRO UNIVERSITY GIZA, EGYPT JUNE 2005

ACKNOWLEDGEMENT

I would like to express my appreciation and gratitude to Prof. Dr. Abdel Mataleb A. Mostafa for his valuable supervision and continues guidance during this work. I am also grateful to him for his efficient and hard support to accomplish this work.

I would like to express my appreciation and gratitude to Prof. Dr. Essam Eldin Khalil for his valuable guidance during the seminar that improved this thesie.

I will never forget the valuable guidance from Dr. Saad Hassanein Abdel Gawad for his help to complete the present work.

Thanks are also due to the Mechanical Power Engineering Department, Faculty of Engineering, Cairo University, where this work has been conducted.

I will ever remember the great support from my leaders in work.

This support had a great effect to accomplish this thesis.

My friends in work also had a great effect of encourage me to achieve this thesis.

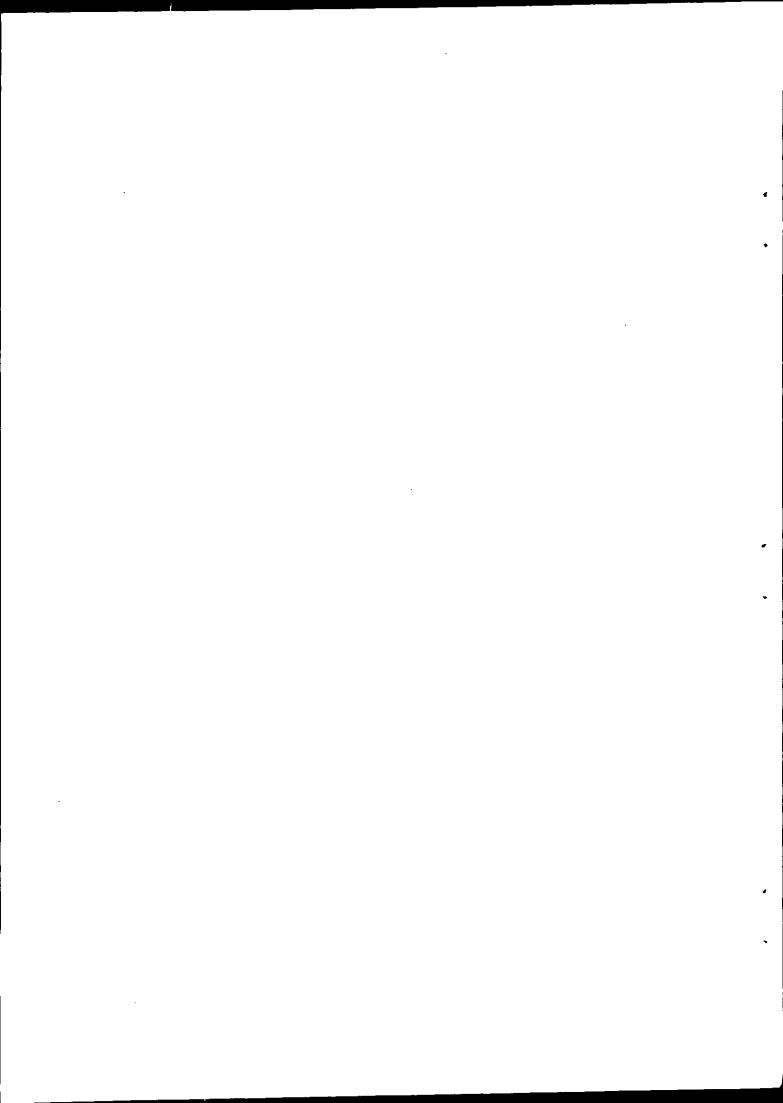
To my family all respect and love for their support during my study for 5 years.

Ahmed Samir M. Khalil

ABSTRACT

The present study is concerned with the atomization of coal water slurry (CWS), which is used as a fuel in many engineering applications that utilize cheap coal as a potential substitute to oil.

The main objective of the present work is the experimental investigation of Coal-Water Slurry (CWS) with coal particle sizes of 75 & 250 µm is presented in thesis. Axial and radial distributions of the Sauter Mean Diameter (SMD) and average spray velocity using an effervescent atomizer is presented. The effects of air liquid ratio and atomizing pressure are considered. All experiments are performed at normal ambient atmospheric conditions using a Phase Doppler Particle Analyzer system (PDPA). The tested CWS contained 25% coal by weight. The air to liquid ratio (ALR) varied from 0.02 to 0.1. Results for water only (without coal particles) are obtained and considered as a base for the CWS results. The mass flow rate for both water only and CWS is kept the same at 5.2 g/s. The atomizing air pressure varied from 2 to 4 bar.


The results show an increase in SMD and a decrease in droplet velocity with the increase of the radial distance towards the spray edge and away from the centerline. A decrease in SMD with the increase of ALR is observed up to a value of 0.4. Behind this value, the ALR has a very little effect. A weak dependence of SMD on discharge pressure is observed. The results also show that the SMD of CWS having coal particles of smaller size is higher than SMD of CWS having coal particles of larger size. The results also show that CWS having coal particles of larger sizes is closer to the water only results than CWS having coal particles of smaller sizes.

CONTENTS

Title	•	Page
		iii
ACKI		
ABST	iv	
CON	v	
LIST	viii	
LIST	ix	
LIST	OF SYMBOLS	xi
СНА	PTER 1: INTRODUCTION	1
1.1	Introduction	1
1.2	Application of slurry atomization	1 1
1.3	Methodology	2
1.4	Types of atomizers	3
1.5	The objective of the present work	5
СНА	PTER 2: BREACKUP MECHANISMS	
2.1	Introduction	7
2.2	The atomization within the atomizer	7
2.3	Breakup region downstream the exit orifice	16
СНА	PTER 3: REVIEW OF PREVIOUS STUDIES	
3.1	Introduction	18
3.1.1	CWS atomization using effervescent atomizers	19
3.2	The effect of nozzle geometry on the spray characteristics	19
3.3	The effect of coal particle size on SMD distribution	20
3.4	Effect of injection pressure on SMD distribution	21
3.5	Effect of ALR on SMD distribution	24
CHA	APTER 4: EXPERIMENTAL TEST RIG	
4.1	Objective	26

4.2	Main component of the test rig	26
4.2.1	Air supply system	26
4.1.1	Coal water slurry supply system	27
4.1.2	Phase Doppler particle analyzer (PDPA)	28
4.3	Phase Doppler Particle Analyzer (PDPA) theory	29
4.4	The traversing mechanism	33
4.5	Effervescent atomizer	33
4.5.1	Coal water slurry sample preparation	34
4.6	Measurements	34
4.6.1	Plain coordinates	34
4.6.2	Measurement variables	34
4.6.3	Test matrix	41
4.7	Conclusion	41
CHAI	PTER 5: RESULTS AND DISCUSSION	
5.1	Spray symmetry	42
5.2	Effect of radial distance on spray characteristics	43
5.2.1	SMD radial distribution	43
5.2.2	Radial distribution of mean spray velocity	45
5.2.3	Number density radial distribution	46
5.2.4	Liquid volume flux radial distribution	47
5.3	Effect of axial distance on spray characteristics	47
5.3.1	SMD axial distribution	47
5.3.2	Axial distribution of mean spray velocity	49
5.4	Number density axial distribution	51
5.5	Liquid volume flux axial distribution	51
5.6	Effect of air to liquid ratio on spray characteristics	53
5.6.1	SMD radial distribution	53
5.7	The Effect of atomizing pressure on SMD radial distribution	55
5.8	Conclusion	60
СНА	PTER 6: CONCLUSIONS AND RECOMENDATIONS	
6.1	Summary and conclusions	61

6.2	Recommendation	62
	RENCES	63

LIST OF TABLE

Table	Page
	-
(4.1) Test Matrix	41