Evaluation of Urethral Retro-Resistance Pressure As a New Diagnostic Tool For

Stress Urinary Incontinence

Thesis Submitted for the Fulfillment of M.D. degree in Obstetrics and Gynaecology

By

Ahmed Mostafa Kamel Zaima

MB.BCh., M.Sc.

Supervised by:

Prof. Dr. Sherif Mohamed Khattab

Professor in Obstetrics & Gynaecology

Faculty of Medicine – Cairo University

Prof. Dr. Ismail Ibrahim Aboul Fotouh

Professor in Obstetrics & Gynaecology

Faculty of Medicine - Cairo University

Prof. Dr. Iman Mohammed Abdel Mohsen

Assistant Professor in Obstetrics & Gynaecology

Faculty of Medicine - Cairo University

Faculty of Medicine

Cairo University

بِسْمِ ٱللهِ ٱلرَّحْمَلْنِ ٱلرَّحِيمِ

وَقُلِ آعْمَلُواْ فَسَيَرَى الله عَمَلَكُمْ وَرَسُولُهُ

وَٱلْمُؤْمِنُونَ عَالِمٍ ٱلْغَيْبِ

وَ ٱلشَّهَ لَهُ فَيُنَبِّئُكُم بِمَا كُنتُمْ تَعْمَلُونَ ﴿التوبة ٥٠٠﴾

بسم الله الرحمن الرحيم

In the name of God the Gracious the Merciful

First of all I thank God who gave me everything and allowed this work to be done.

I wish to express my deepest gratitude to **Professor Dr. Sherif Khattab**, for his generous and caring attitude, his keen meticulous supervision and his great scientific help, during this work and throughout my training.

I would also like to express my deepest appreciation to **Professor Dr. Ismail Aboul Fotouh**, for his kind supervision and encouragement that were the corner-stone without which this work could not have been built.

And of course, I would not have completed this review in a timely fashion without the generous assistance and support of Assistant Professor **Dr. Iman Abdel Mohsen**. I specially want to thank her for teaching urodynamics

And last but not least, I would like to thank my family, to whom I dedicate this work, for their love and support which made every difficulty I met surmountable.

KEYWORDS

Stress urinary incontinence – urethral retro-resistance pressure – maximum urethral closing pressure

OBJECTIVE

Aim of the study was to correlate urethral retro resistance pressure (URP) with the maximum urethral closure pressure (MUCP) in patients with urinary incontinence and healthy individuals.

STUDY DESIGN

Eighty patients with the complaint of urinary incontinence had a urodynamic examination including urethral pressure profiles and URP. Additionally, 40 healthy individuals without the complaint of any incontinence had their URP and urethral pressure profiles measured. The correlation of MUCP, and URP were calculated.

RESULTS

URP correlates well with the diagnosis of urodynamic stress incontinence. Correlation coefficient between URP and MUCP is 0.74. Healthy individuals have significantly higher values for URP and MUCP.

CONCLUSION

URP is a valuable less invasive test than conventional urethral function tests for the diagnosis of urodynamic incontinence with an excellent correlation of MUCP and URP.

Contents

Title	Page	
Acknowledgment	ii	
Abstract	iii	
Contents	iv	
List of Figures	V	
List of Tables	viii	
List of Abbreviations	ix	
Introduction	1	
Aim of The Study	3	
Anatomy of The Lower Urinary Tract, Pelvic Floor, and Pelvic	5	
Support)	
The Act of Micturition	17	
Elements of Urinary Continence	21	
Intrinsic Urethral Sphincter Deficiency	37	
Evaluation of Patients with Urodynamic Stress Incontinence		
Urethral Function Tests	79	
Subjects and Methods	97	
Results	107	
Discussion	127	
Conclusion	133	
Summary	135	
References	139	
Appendix	159	
الملخص العربي	ĺ	

List of Figures

Figure	Title	Page
1	Integrate levels of Support	9
2	The suspensory ligaments of urethra – a live anatomical study	10
3	Diagrammatic presentation of the sagital view of figure 2	10
4	Upper layer of muscles of the pelvic floor	12
5	Longitudinal muscles of the anus – origin and insertion	14
6	Lower layer muscles of the pelvic floor	16
7	a. Normal Pubocervical fascial supportb. Torn Pubocervical fascial sling	24
8	Smooth muscle in the dynamics of urethral closure and opening	30
9	Active closure	31
10	Micturition	31
11	Resting closed. Sitting lateral X-ray	32
12	Schematic presentation of the urethrovesical unit at rest, corresponding to the X-ray in figure 11	32
13	Urethral closure during effort	33
14	Schematic presentation of figure 13	33
15	Urethral opening during micturition	34
16	Schematic presentation of figure 15	34
17	Schematic presentation of the imbalance leading to stress incontinence	36
18	The components of urethral closure	36
19	A sample voiding diary	50
20	Anal reflex	53
21	Diagram presenting the Q-tip test and the goniometer used to measure the angle of mobility	54

22	Diagram comparing the Q-tip test in stress urinary	55	
	incontinence and normals	33	
23	Diagram demonstrating office evaluation of bladder	59	
	function	29	
24	Diagram presentation of the principle of subtraction	61	
	cystometry		
25	Cystourethrography demonstrating bladder neck	70	
	beaking		
26	a. Positive pressure urethrography	70	
20	b. Tratner's Catheter	, 0	
27	Trans-abdominal ultrasound performed to measure	74	
	post-voiding residual volume		
	Methods of assessment of bladder neck position and		
28	mobility by ultrasound scan as recommended by the	75	
	German association of urogynaecology		
29	Urethral pressure profile	82	
30	Variation of MUP with age in continent and incontinent	86	
	patients		
31	Comparison of FUL in continent and incontinent	86	
	patients		
32	Valsalva leak point pressure	90	
33	Cough leak point pressure	90	
34	Diagram demonstrating the technique for measuring	95	
	URP		
35	Sample graph of the URP reading	95	
36	Photograph of the electronic scale and the pad used for	102	
	the 1-hour pad test		
37	Catheter used for URP measurement	103	
38	URP measurement curve	104	
39	Catheters used for subtraction cystometry	105	
40	Resting UPP measurement curve	105	
41	Andromeda – M00101-2 Ellipse	106	
42	Scatter graph to demonstrate correlation of URP to A:	111	
	age, B: Parity and C: BMI, in Group A		

43	Scatter graph to demonstrate correlation of URP to A: age, B: Parity and C: BMI, in Group B	112
44	Scatter graph to demonstrate correlation of URP to A: age, B: Parity and C: BMI, in Group C	114
45	Scatter graph to demonstrate correlation of URP to A: age, B: Parity and C: BMI, in All study individuals	115
46	Histograms demonstrating distribution of URP measurements in each study group	118
47	Histograms demonstrating distribution of MUCP measurements in each study group	120
48	Histograms demonstrating distribution of Logarithm of MUCP measurements in each study group	121
49	Boxplot of A: URP and B: MUCP distribution among the three groups	122
50	Scatter graph demonstrating correlation between URP and MUCP	123
51	Scatter graph plotting sensitivity and specificity of URP	124
52	Scatter graph plotting sensitivity and specificity of MUCP	124

Table	Title	Page
1	Standard steps of the 1-Hour pad test as set by the International Continence Society	56
2	Comparison of the characteristics of the groups via ANOVA test	109
3	Regression analysis of confounding factors on Group A	109
4	Regression analysis of confounding factors on Group B	110
5	Regression analysis of confounding factors on Group C	110
6	Regression analysis of confounding factors on All study subjects	110
7	Descriptive statistics of URP measurements of Each Study Group	118
8	Descriptive statistice of Log (MUCP) measurements of Each study Group	121
9	Descriptive statistics of MUCP measurements of Each Study Group	122
10	Comparison of clinical significance between both measurements	125
App.	Urogynaecology symptom questionnaire	160
App.	Quality of Life questionnaire	161

List of Abbreviations

AHCPR	Agency for Health Care Policy and Research
ATFP	Arcus tendineus fascia pelvis
ATRV	Arcus tendineus rectovaginalis
СТ	Computed Tomography
EAS	External anal sphincter
EMG	Electromyography
EUL	External urethral ligament
FUL	Functional urethral length
ICS	International Continence Society
IS	Ischial spine
ISD	Intrinsic urethral sphincter deficiency
IVP	Intravenous Pyelography
LMA	Longitudinal muscle of the anus
LP	Levator plate
MRI	Magnetic Resonance Imaging
MUCP	Maximum urethral closure pressure
PAP	Postanal plate
PCF	Pubocervical fascia
PCM	Pubococcygeus muscle
PM	Perineal membrane
POP-Q	Pelvic Organ Prolapse - Quantification
PTR	Pressure transmission ratio
PUL	Pubourethral Ligament

P _{ura}	Urethral pressure
PUV	Posterior urethra-vesical angle
P _{ves}	Intravesical pressure
PVL	Pubovesical ligament
UPP	Urethral pressure profile
URP	Urethral retro-resistance pressure
USL	Uterosacral ligament
VCUG	Voiding cystourethrography

Urinary incontinence is a distressing condition which although rarely life-threatening, adversely affects all aspects of a woman's quality of life. Through ignorance, embarrassment and a belief that loss of bladder control is a 'normal' result of childbirth and ageing many women suffer for years before seeking help (Norton et al. 1998). This is unfortunate because with appropriate investigations an accurate diagnosis can be made and many women can be cured, most improved, and all helped by various different management strategies.

Urinary incontinence is defined by the International Continence Society (ICS) as any involuntary loss of urine. Conversely, continence is the ability to hold urine within the bladder at all times except during micturition (Abrams et al. 2002). Both continence and micturition depend upon a lower urinary tract, consisting of the bladder and urethra, which is structurally and functionally normal, that are normally situated and supported within the pelvis. In order to understand urinary incontinence in women it is necessary to have a basic knowledge of the structure and function of the lower urinary tract.