MOLECULAR GENETIC STUDIES ON SOME AMINO ACIDS PRODUCTION FROM BACTERIA

BY GAMAL MOHAMED ELSAYED HAMED

B.Sc. Agric. Sc. (Genetics), Ain Shams University, 2000

A thesis submitted in partial fulfillment of

the requirements for the degree of

MASTER OF SCIENCE

in Agricultural Science (Genetics)

Department of Genetics Faculty of agriculture Ain Shams University

Approval sheet

MOLECULAR GENETIC STUDIES ON SOME AMINO ACIDS PRODUCTION FROM BACTERIA

BY GAMAL MOHAMED ELSAYED HAMED

B.Sc. Agric.Sc. (Genetics), Ain Shams Univ., 2000

This thesis for M.Sc. degree has been approved by:
Prof. Dr. Fatma Nabeh Talkhan
Dr. Fatma Mohamed Ibrahim Badawy
Dr. Khaled Abd El- Aziz Soliman Associate Professor of Genetics, Faculty of Agriculture, Ain Shams University
Prof. Dr. Samir Abd El- Aziz Ibrahim Prof. of Genetics, Faculty of Agriculture, Ain Shams University

Date of Examination: 6 / 8 / 2005

MOLECULAR GENETIC STUDIES ON SOME AMINO ACIDS PRODUCTION FROM BACTERIA

BY

GAMAL MOHAMED ELSAYED HAMED

B.Sc. Agric. Sc. (Genetics), Ain Shams Univ., 2000

Under the supervision of:

Prof. Dr. Samir Abd El- Aziz Ibrahim

Professor of Genetics, Department of Genetics, Faculty of
Agriculture, Ain Shams University (Principal Supervisor)

Dr. Khaled Abd El- Aziz Soliman

Associate Professor of Genetics, Department of Genetics,
Faculty of Agriculture, Ain Shams University

ABSTRACT

Gamal Mohamed Elsayed Hamed, Molecular Genetic Studies on Some Amino Acids Production from Bacteria. Unpublished M. Sc. thesis (Genetics), Ain Shams Univ., Agric. Fac. Genetics Department, 2005.

In this study three different strains of Corynebacterium glutamicum i.e., C. glutamicum xerioss, C. glutamicum (ATCC 21513) and C. glutamicum (ATCC 13032) were obtained. The production of amino acids lysine and methionine by these strains was determined. C. glutamicum (ATCC 13032) gave the highest level of the two amino acids, 0.083 g/l lysine and 0.45 g/l methionine. This strain was subjected to N-methyl-N-nitro-N-nitrosoguanidine mutagenesis. Several mutants with different abilities to produce the desired amino acids were obtained. Of these mutants were isolated and selected based on resistance to lysine analogue (s-aminoethyl-cysteine) and the other were isolated and selected based on resistance to methionine analogue (selenomethionine). The amount of amino acids produced by the first step mutagenesis comparing with original strain was reached to more than 86.7 times in the case of lysine and three times in the case of methionine, (7.2 g/l and 1.4 g/l for lysine and methionine, respectively). In the second step mutagenesis, the amount of the amino acids produced was highly increased, it was 34.84 g/l and 29.14 g/l for lysine and methionine, respectively, i.e. the production capacity was increased 419.6 times in the case of lysine and 63.6 times in the case of methionine comparing with the original strain. To confirm the genetic changes and find molecular markers for high production, molecular and biochemical fingerprints including REP-PCR and SDS-PAGE were carried out on the resultant mutants

Key words: *Corynebacterium glutamicum*, mutagenesis, NTG, lysine, Methionine, SDS-PAGE, REP-PCR, BOX-PCR.

ACKNOLEDGMENT

The author wishes to express his sincere appreciation and gratitude to **Prof. Dr. Samer Abd El-Aziz Ibrahim**, Professor of Genetics, Genetics Department, Faculty of Agriculture, Ain Shams University, for their Supervision, suggestion the problem, and constructive criticism throughout the course of this work and repairing the manuscript.

I wish to express my sincere gratitude and thanks for **Dr**. **Khaled Abd El-Aziz Soliman,** Associate Professor in Genetics, Genetics Department, Faculty of Agriculture, Ain Shams University, for help in supervising this work.

Acknowledgment is also extended for, **Prof. Dr. Ahmed Aboul-Enein**, Professor of Biochemistry, Biochemistry Department, Faculty of Agriculture, Cairo University, for help and his endless support during the progress of this study and **Dr. Elsayed Elsayed Hafez**, Molecular Biologist, Nucleic Acid Department, Genetic Engineering Research and Biotechnology Institute, Mubarak city, for sincere gratitude for his remarks throughout the experiment of study.

Acknowledgment is also extended from deep of my heart to **the soul of Prof. Dr. Assem Mohamed Mohamed Ali** Professor of Microbial and Biochemical Genetic, Genetic Engineering and Biotechnology Division, NRC. He gives me the basics of scientific methods and makes me able to work and success.

And also to all staff members of the Ain Shams Center for Genetic Engineering and Biotechnology (ACGEB) and Department of Genetics, Faculty of Agriculture, Ain Shams University for their assistance and support during the course of this study.

CONTENTS

	Pages
List of Tables	iv
List of Figure	vi
I. Introduction	1
II. Review of literature	3
1. The medical importance of both lysine and methionine	3
2. Amino acid producing bacteria	4
3. Production of amino acids by branched pathways	6
3.1. Lysine synthesis pathway	7
3.2. Methionine synthesis Pathway	9
4. Genetic Improvement of the amino acids producer bacteria	11
4.1. Random mutagenesis	11
4.1.1. Lysine production by lysine analogue resistant	12
mutants of Corynebacterium glutamicum	
4.1.2. Methionine production by methionine analogue	13
resistant mutants of Corynibacterium glutamicum	
4.2. Transgenic bacteria	15
5. Regulation of amino acid production	15
6. Biochemical and molecular studies related to amino aci	d 17
production.	
6.1. Biochemical genetic studies	17
6.2.Molecular genetic studies	20
7. Large scale production of amino acids using fermentation	n 23
process	
III.MATERIALS AND METHODS	27
1-Materials	27
1.1. Bacterial strains	27
1.2. Culture Media	27
1.2.1- LB medium	27
1.2.2- Minimal medium (MM)	27

1.2.3- Lysine fermentation medium (LFM)	28
1.2.4. Complete medium (CM)	28
1.2.5. Methionine fermentation medium (MFM)	28
1.2.6. Modified Lysine fermentation medium (MLFM):	28
1.2.7. Minimal medium (MM)	29
1.3. Amino acid analyzer columns	29
1.4- Chemicals	29
1.5- Buffers	29
1.5.1- Amino acid analyzer buffers	30
1.5.2- SDS - PAGE	31
2. Methods	33
2.1 Cultivation of <i>C. glutamicum</i>	33
2.2 Induction of mutation	33
2.3. Isolation analogue resistant mutants	33
2.3.1. Isolation of L-lysine analogue resistant mutants	33
2.3 2. Isolation of L-methionine analogue resistant mutants	s 34
2.4. Preparation of cells for amino acid production	34
2.5. Qualitative assay for amino acid production	34
2.5.1. Sample preparation:-	34
2.5.2. Testing of amino acids production using Thin Layer	34
Chromatography (TLC)	
2.6. Sample Preparation for amino acid analysis	35
2.7. Determination of amino acids production by amino acid	36
analyzer	
2.8. Extraction of bacterial protein (Laemmli, 1970)	36
2.9. Molecular studies	37
2.9.1. Genomic DNA extraction from the bacterial cells	37
2.9.2. PCR Primers	38
2.9.3. PCR amplification and agarose gel electrophoresis	38
2.9.4. Scoring and analysis of REP-PCR	

IV. Results and Discussion	40
1. lysine and methionine production capacity	40
1.1. TLC chromatography assay	40
1.2. lysine and methionine production of parental original	41
strains	
2. Frist step mutagensis	43
2.1. The amino acid production capacity for lysine	46
analogue resistant mutants (AEC mutants).	
2.2. The amino acid production capacity for methionine	51
analogue SM resistant mutants	
3. Second step mutagensis	57
3.1. Lysine and methionine production capacity of resultant	59
second step mutragensis AEC resistant mutants	
3.2. Lysine and methionine production capacity of resultant	61
second step mutragensis SM resistant mutants	
4. Biochemical genetic markers for high production capacity	67
4.1. Total protein fingerprint.	67
4.2. REP-PCR.	70
4.2.1. BOX- Primer	70
4.2.2. Primer PRO1	70
4.2.3. Primer PRO2	75
4.2.4. Primer PRO3	75
5. Examination if the mutant strains if they auxotroph mutants	80
or regulatory ones (Methionine and lysine).	
V. Summary	82
VI. References	85
VI Arabic summary	

LIST OF TABLES

		Pages
1	The primer sequence used in this study	38
2	The Production level of Lysine and Methionine of in	42
	three original Strains	
3	Survival and lysine analogue (AEC) resistant mutants	44
	induced by different NTG treatments	
4	Survival and methionine analogue (SM) resistant mutants	45
	induced by different NTG treatments	
5	Lysine and Methionine production (g/l) by resistant	48
	mutants of Lysine analogue AEC results from treatment	
	with different NTG treatments	
6	Lysine and Methionine production (g/l) by resistant	53
	mutants of methionine analogue (SM) results from	
	treatment with different NTG treatments	
7	AEC and SM resistant mutants resulted mutagenized of	57
	mutant by different NTG treatments from second step	
8	Lysine and methionine production (g/l) AEC resistant	60
	mutants resulted from different treatment of NTG in the	
	second step mutagenesis.	
9	Determination of Methionine and Lysine in resistant	63
	mutants (0.25; 0.5 and 1 mg/ml NTG) to Methionine	
	analogue.	
10	Comparison between different resistant mutants to AEC	65
	and wild type for the production of lysine and methionine	
11	Comparison between different resistant mutants to SM	66
	and wild type for the production of lysine and	
	methionine.	
12	Protein banding pattern of six bacterial strains as revealed	69
	by SDS-PAGE for the water soluble proteins	
13	Molecular size in base pairs of amplified fragments	74
	produced by PRO1 primer with six bacterial strains	

- **14** Molecular size in base pairs of amplified fragments 77 produced in six bacterial strains by PRO2 primer.
- **15** Molecular weights in base pairs of amplified fragments 79 produced by PRO3 primer with six bacterial strains

LIST OF FIGURE

		Pages
1	The pathway of lysine syntheses in C. <i>glutamicum</i> .	7
2	The pathway of methionine syntheses in C. glutamicum.	10
3	TLC of fermented broth of the three original strains of both	41
	lysine and methionine compared with standard amino acids	
4	Lysine and Methionine production levels of the three original	42
	strains	
5	Production of lysine and methionine from isolated AEC	49
	resistant mutants resulted from (0.25mg/ml NTG)	
6	Production of lysine and methionine from AEC resistant	49
	mutants resulted from (0.5mg/ml NTG)	
7	Production of lysine and methionine AEC from resistant	50
	mutants resulted from 1.0mg/ml NTG	
8	The TLC analysis for different lysine analogue resistant	50
	mutant strains obtained by Treatment with NTG (0.25mg/ml) $$	
9	Production of lysine and methionine by SM resistant mutants	55
	resulted from (0.25mg/mLNTG).	
10	Production of lysine and methionine by SM resistant mutants	55
	resulted from (0.5mg/ml NTG).	
11	Production of lysine and methionine by SM-resistant mutants	56
	resulted from (1mg/ml NTG).	
12	Production of both lysine and methionine in fermented broth	56
	comparing with slandered amino acids	
13	The yield of both lysine and methionine obtained from AEC-	60
	resistant mutants obtained from second step mutagenesis	
	resulted from treatment 0.25 mg /ml NTG	
14	TLC for the two mutants (NTG/1C/2 and (NTG/1C/6)	61
	compared with lysine and methionine standard.	

- 15 The yield of both lysine and methionine obtained from SM 63 resistant mutants obtained from second step mutagenesis.
- **16** Production of both lysine and methionine in fermented broth 64 comparing with standard amino acids by TLC chromatography technique.
- 17 Different resistant mutants to AEC and original strain W3 for 65 the production of both lysine and methionine
- **18** Comparison between different resistant mutants to SM and 66 original strain W3 for the production of both lysine and methionine.
- **19** Biochemical markers differences between the over 68 production mutants for lysine and methionine comparing with original strain.
- **20** REP-PCR for wild type and the highly producers mutants 72 (Lycine & methionine) using Box primer.
- 21 REP-PCR for wild type and the highly producers mutants 73 (Lycine & methionine) using pro1
- 22 REP-PCR for wild type and the highly producer mutants 76 (Lysine and methionine) using pro2
- **23** REP-PCR for wild type and the highly producer mutants 78 (Lysine and methionine) using pro3
- 24 The growth of the first step mutagenesis resistant mutants for 81 both lysine and methionine analogue grown on complete and minimal media
- 25 The growth of the second step mutagenesis of resistant 81 mutants for lysine and methionine analogue on complete and minimal media

I. INTRODUCTION

Amino acids are the building blocks of protein, and are utilized by every cell in the body for a variety of crucial functions. Normally, the amino acids necessary for animals and humans are obtained from food sources, particularly those high in protein content. The body breaks these proteins down into their constituent parts of amino acids; and then our cells use these amino acids to build specific types of protein that needs. There are two types of amino acids, essential and nonessential. Essential ones are defined as those that the body cannot synthesize them and must obtain them from food sources (or supplements). Nonessential ones, on the other hand, can be synthesized by bodies, but can also be consumed as supplements (Jalkanen, et al., 2004).

Amino acids are used in a variety of ways, most of them associated with food. Amino acids are also used as food and feed additives. As well known, the farm animals cannot synthesize lysine, methionine, tryptophan, leucine, valine, phenylalanine, threonine, and arginine as essential amino acids. They must obtain them from the proteins in their food. However, the less expensive, more abundant sources of food proteins, the seed of crop plants, are rather deficient in some of the essential amino acids, particularly lysine, methionine, and tryptophan (Soda, et al., 1983). For example, the corn proteins contain only 0.2% lysine, whereas the animal meat proteins contain 2.6% lysine. The nutritional value of plant seed proteins can be increased significantly if the seed proteins can be fortified with the deficient amino acids. Another important use of amino acids is as a starting material for the production of other compounds. One of the most famous is the sweetener aspartame, which produced from Lphenylalanie and L-aspartic. Finally, some amino acids have medical uses, whether for specific therapeutic effects or as components of intravenous infusions given to patients who have difficulty taking in