Stem Cell Therapy in Acute Renal Failure in Rats Thesis

Submitted for fulfillment of M.S.c degree in Medical Biochemistry

By

Mohammed Mahmoud Hassan Elsebaie

M.B B.Ch. in Medicine and Surgery Faculty of Medicine Cairo University

Supervised by

Prof. Dr. Mohammed Abd El-Aziz

Professor of Medical Biochemistry Faculty of Medicine Cairo University

Prof. Dr. Soheir Mahfouz

Professor & Head of Pathology Department Faculty of Medicine Cairo University

Assistant Prof. Dr. Laila Rashed

Assistant Professor of Medical Biochemistry
Faculty of Medicine
Cairo University

Faculty of medicine Cairo University 2010

العلاج بالخلايا الجذعية في الفئران المصابة بالفشل الكلوي الحاد

توطئة للحصول على درجة الماجستير في الكيمياء الحيوية الطبية مقدمة من

الطبيب / محمد محمود حسن السباعي

بكالوريوس الطب والجراحة كلية الطب _ جامعة القاهرة تحت إشراف

أ.د/ محمد عبد العزيز واصف

أستاذ الكيمياء الحيوية الطبية كلية الطب _ جامعة القاهرة

أ.د / سهير محفوظ

أستاذ و رئيس قسم الباثولوجي كلية الطب _ جامعة القاهرة

أ.م / ليلى أحمد راشد

أستاذ مساعد الكيمياء الحيوية الطبية كلية الطب - جامعة القاهرة كلية الطب - جامعة القاهرة

Abstract

One of the major causes of death is acute renal failure. The hemodialysis was the only way of treatment. The aim of our study was to evaluate the therapeutic value of mesenchymal stem cells and hepatocyte growth factor (HGF) as an alternative treatment and prediction of their mechanism of action through the measurement of TNF- α , IL-10 & VEGF. Our results showed that mesenchymal stem cells & HGF can be used effectively as a way of treatment.

Key Words:

Mesenchymal stem cells

TNF-α

IL-10

VEGF

HGF

Acute renal failure

AKNOWLEDGEMENT

First of all, I always feel indebted to **ALLAH** whose blessings cannot be counted and who gave me the power to finish this thesis.

I am indebted to **prof.Dr. Mohammed Abd-Elaziz**, professor of biochemistry, for his encouragement & close supervision to introduce this work in the best way.

I am also indebted to **prof.Dr. Soheir Mahfouz**, professor & head of pathology department, for her valuable contribution and guidance regarding histopathologic examination of renal samples.

I would like to express my deepest appreciation & gratitude to **prof.Dr. Laila Rashed**, assistant professor of biochemistry, for her wise guidance, supervision, revision of this work & teaching me new skills & techniques.

I would like to express my deepest love & appreciation to my wife, my parents & my family for their great support & encouragement.

Finally I would like to express my deep thanks to all the members of **biochemistry department** for their help & support.

List of abbreviations

ARF	Acute renal failure
ACEI	Angiotensin converting enzyme inhibitor
ANCA	Antinuclear antibody
ARB	Angiotensin receptor blocker inhibitor
ATN	Acute tubular necrosis
ATP	adenosine triphosphate
bFGF	basic fibroblast growth factor
BIO	6-bromoindirubin-3'-oxime
BM	bone marrow
BMDC	bone marrow–derived cells
BMSC	bone marrow stem cell
BPH	benign prostatic hypertrophy
BUN	Blood urea nitrogen
CD	Cluster of differentiation
CFU-F	fibroblastoid colony forming unit
CRRT	continuous renal replacement therapy
CVVH	continuous veno-veno-hemofiltration
DIC	Disseminated intravascular coagulopathy
DNA	Deoxyribonucleic acid
ECM	extracellular matrix
EGF	epithelial growth factor
ESC	embryonic stem cells
FENa	fractional excretion of sodium
G ₀ /G ₁	Gap note/Gap 1 phase
GBM	glomerular basement membrane
GCSF	granulocyte-colony stimulating factor
GFP	green fluorescence protein
GFR	glomerular filtration rate

GIT	Gastro intestinal tract
GM-SCF	granulocyte-macrophagecolony-stimulating factor
GN	glomerulonephritis
GTC	guanidine thiocyanate
GVHD	graft-versus-host-disease
H&E	haematoxylin and eosine
H-CAM	homing-associated cellular adhesion molecule
HGF	hepatocyte growth factor
HSC	hematopoietic stem cell
HUS	hemolytic uremic syndrome
I/R	ischemia-reperfusion
ICM	inner cell mass
ICU	intensive care units
IHD	intermittent hemodialysis
IL	Inter leukin
IM	intermediate mesoderm
kD	Kilo Dalton
LFA-1	lymphocyte function—associated antigen 1
MAPC	multipotent adult progenitor cell
MET	mesenchyme-to-epithelial
MM	metanephric mesenchyme
MMP	matrix metalloproteinase
MSC	mesenchymal stem cell
MT	masson trichrome
MT1	membrane type 1
NGAL	neutrophil-gelatinase-associated lipocalin
NK	Natural killer cells
NSAID	Non steroidal anti-inflammatory drug
OI	osteogenesis imperfecta
P value	Probability value

PAS	periodic acid shift
PCR	Polymerase chain reaction
PDGF	platelet derived growth factor
PG	prostaglandin
RBC	Red blood corpuscles
RT-PCR	Reverse transcriptase PCR
SCF	stem cell factor
SCNT	somatic cell nuclear transfer
SD	Standard deviation
SDF-1	stromal-derived factor 1
TGF-β	transforming growth factor-β
THP	Tamm-Horsfall protein
TNF-α	Tumor necrosis factor-α
UB	ureteric bud
UCB	umbilical cord blood
VCAM-1	vascular cell adhesion molecule
VEGF	Vascular endothelial growth factor
VLA-4/5	very late antigen 4/5

List of contents

	page
List of abbreviations	I
List of figures	IV
List of tables	VI
Abstract	VII
Introduction & Aim of work	1
Review of literature:	
Stem cells	5
Acute renal failure	46
Regenerative approaches to renal disease	65
Renal failure & hepatocyte growth factor	82
Materials & Methods	86
Results	106
Discussion	134
Summary, conclusion & recommendation	147
References	152
Arabic summary	

List of figures

List of figures		page
Figure 1	classification of human stem cells	7
Figure 2	Models of mesenchymal stem cell differentiation	30
Figure 3	Schematic model describing adult stem cell differentiation	32
Figure 4	Schematic diagram for the proliferative hierarchy of mesenchymal progenitors	36
Figure 5	pathophysiology of ischemic acute renal failure	55
Figure 6	Standard protocol for PKH26 dye labeling	93
Figure 7	Mean & SD of serum urea among the studied groups	110
Figure 8	Mean & SD of Serum creatinine among the studied group	112
Figure 9	Mean & SD of VEGF expression among the studied groups	114
Figure10	Mean & SD of IL-10 expression among the studied groups	116
Figure11	Mean & SD of TNF-α expression among the studied groups	118
Figure12	correlation between serum urea & PCR product of VEGF gene expression	120
Figure13	correlation between serum creatinine & PCR product of VEGF gene expression	120
Figure14	correlation between serum urea & PCR product of IL-10 gene expression	121
Figure15	correlation between serum creatinine & PCR product of IL-10 gene expression	121
Figure16	correlation between serum urea & PCR product of TNF-α gene expression	122
Figure17	correlation between serum creatinine & PCR product of TNF-α gene expression	122
Figure18	correlation between PCR products of VEGF & TNF-α gene expression	123
Figure19	correlation between PCR products of IL-10 & TNF-α gene expression	123
Figure20	correlation between PCR products of IL-10 & VEGF gene expression	124
Figure21	PCR products of VEGF gene expression on agarose gel electrophoresis	125
Figure22	PCR products of IL10 gene expression on agarose gel electrophoresis	125
Figure23	PCR products of TNF alpha gene expression on agarose gel electrophoresis	125
Figure24	An agarose gel electrophoresis show PCR products of CD29 gene expression in MSC ulture	126

Figure25	An agarose gel electrophoresis shows PCR products of beta actin gene expression	126
Figure26	Mesenchymal stem cells in culture.	126
Figure27	labelling of MSC with PKH26 dye	126
Figure 28	renal cortex (H&E)(control)	127
Figure29	renal cortex (PAS) (control)	127
Figure30	renal cortex (MT) (control)	127
Figure31	renal medulla (H&E) (control)	127
Figure32	renal cortex (MT X400) (ARF)	128
Figure33	renal cortex (H&E X400) (ARF)	128
Figure34	renal cortex (H&E X 400) (ARF)	128
Figure35	renal medulla (PAS X 400) (ARF)	128
Figure36	renal cortex(H&E X100) (ARF +MSC after 6h)	129
Figure37	renal cortex(PASX400) (ARF +MSC after 6h)	129
Figure38	Renal cortex(H&EX200) (ARF +MSC after 6h)	129
Figure39	renal cortex(PASX200) (ARF +MSC after 6h)	129
Figure40	renal medulla(H&E X100) (ARF +MSC after 6h)	130
Figure41	renal medulla(PASX100) (ARF +MSC after 6h)	130
Figure42	renal cortex(PASx400) (ARF +MSC after24h)	130
Figure43	renal cortex(H&Ex400) (ARF +MSC after24h)	130
Figure44	renal cortex (MTX400) (ARF +MSC after24h)	130
Figure45	renal medulla(PASX1000)(ARF +MSC after24h)	130
Figure46	renal cortex(H&E X200) (ARF +HGF after6h)	131
Figure47	renal cortex(H&EX200) (ARF +HGF after6h)	131
Figure48	renal cortex(MTx200) (ARF +HGF after6h)	131
Figure49	renal cortex(MTX1000) (ARF +HGF after6h)	131

List of tables

	List of tables	page
Table 1	Differentiation Potential of Bone Marrow-Derived Mesenchymal Progenitors <i>in vitro</i>	33
Table 2	RIFLE system for classification of renal failure stages	46
Table 3	Differential diagnosis of ARF	57
Table 4	The oligonucleotide primers sequence of studied genes	99
Table 5	Mean & SD of urea, creatinine, VEGF,IL-10,TNF-α in group (1)	107
Table 6	Mean & SD of urea, creatinine, VEGF,IL-10,TNF-α in group (2)	107
Table 7	Mean & SD of urea, creatinine, VEGF,IL-10,TNF-α in group (3a)	108
Table 8	Mean & SD of urea, creatinine, VEGF,IL-10,TNF-α in group (3b)	108
Table 9	Mean & SD of urea, creatinine, VEGF,IL-10,TNF-α in group (4a)	109
Table 10	Mean & SD of urea, creatinine, VEGF,IL-10,TNF-α in group (4b)	109
Table 11	comparison of mean & SD of urea among the studied group	110
Table 12	comparison of mean & SD of creatinine among the studied group	112
Table 13	comparison of mean & SD of VEGF among the studied group	114
Table 14	comparison of mean & SD of IL-10 among the studied group	116
Table 15	comparison of mean & SD of TNF-α among the studied group	118

Introduction & Aim of work

Introduction

Acute renal failure (ARF), also known as acute kidney injury, is a rapid loss of renal functions due to damage to the kidneys, resulting in retention of the nitrogenous compounds (urea and creatinine) and non nitrogenous waste products that are normally excreted in urine (Albright RC Jr, 2001).

Depending on the severity and duration of renal dysfunction, this accumulation is accompanied by metabolic disturbances, such as metabolic acidosis and hyperkalemia, changes in body fluid balance, and effects on many other organ systems. It can be characterized by oliguria or anuria (**Singri N et al, 2003**). It is a serious disease and treated as medical emergency.

Causes of acute renal failure are

- 1- Pre renal causes such as hypovolaemia usually from shock or dehydration, vascular problems such as renal vein thrombosis, atheroembolic disease or prolonged ischemia of the kidneys due to vascular injuries during surgery.
- 2- Renal causes such as prolonged use of certain medications such as non steroidal anti-inflammatory drugs as aspirin and antibiotics as aminoglycosides, autoimmune diseases that affect the kidney as glomerulonephritis and systemic lupus erythematosus, multiple myeloma and hemolytic uraemic syndrome, chronic diseases such as chronic uncontrolled hypertension and chronic uncontrolled diabetes mellitus.
- 3- Post renal causes such as prostatic cancer and kidney stones. (**Star RA**, **1998**).

Acute renal failure is present in 1 to 5 percent of patients at hospital admission. The condition affects 15 to 20 percent of patients in intensive care units (ICUs); reported mortality rates range from 50 to 70 percent in those patients (**Albright RC Jr et al, 2001**). Infection and cardiorespiratory complications are the most common causes of death in patients with acute renal failure.

In clinical practice, ischemia-reperfusion (I/R) injury is the most common cause for acute renal failure. The pathogenic events in ischemia/reperfusion injury include acute tubular necrosis, apoptosis, glomerular injury and inflammation.

Management of acute renal failure depends first on correction of the metabolic abnormalities like the correction of hyperkalemia and correction of metabolic acidosis then treatment of the cause as correction of the hypovolemic state during shock or immunosuppressive therapy for glomerulonephritis (**Kodner CM & Kudrimoti A, 2003**). Although a number of agents and growth factors have been proven effective in the amelioration of ARF in otherwise healthy animals, no significantly effective new therapy has been introduced into clinical practice in decades. It is for these reasons that fundamentally new strategies for the treatment of ARF are needed.

Stem cell therapy holds a great promise for the repair of injured tissues and organs, including the kidney. Stem cells are undifferentiated cells that undergo both self-renewal and differentiation into one or more cell types (Weissman IL, 2000), & are found in adult and embryonic tissues and have potential uses in therapies designed to repair and

regenerate organs. There has been considerable focus on the ability of stem cells to differentiate into non-haematopoietic cells of various tissue lineages, including cells of the kidney (**Oswald J et al 2004**). This growing evidence has led to a reconsideration of the source of cells contributing to renal repair following injury.

The mechanism of action of stem cell therapy is unclear in most disease conditions. Very-low-level organ engraftment of circulating bone marrow-derived stem cells has been shown (Orlic D et al, 2001) but was not corroborated by others (Balsam LB et al, 2004). The percentage of incorporated stem cells varies widely, but it is usually below 1% in a given organ, and, in addition, its magnitude depends on the studied disease model. Other mechanistic possibilities for the therapeutic effects of stem cells include fusion with resident organ cells (Wurmser AE & Gage FH, 2002), immunomodulation (Aggarwal S & Pittenger MF, 2005) and paracrine mechanisms elicited through trophic mediators (Caplan AI & Dennis JE, 2006) that result in the inhibition of fibrosis and apoptosis, enhancement of angiogenesis, stimulation of mitosis, and proliferation and differentiation of organ-intrinsic precursor or stem cells.

Hepatocyte growth factor (HGF), first identified by Russell WE et al, 1984 then purified and cloned by Nakamura T et al, 1986 as a potent mitogen for fully differentiated hepatocytes.

Hepatocyte growth factor exerts mitogenic responses in renal epithelial cells derived from distinct regions and species, including rabbit and rat proximal tubular cells (Harris RC et al, 1993) and rat glomerular epithelial cells. HGF stimulates the proliferation of renal epithelial cell lines, including a rat visceral glomerular cell line (Kawaguchi M et al, 1994), proximal tubular cell lines (Ishibashi K et al, 1992). Likewise,